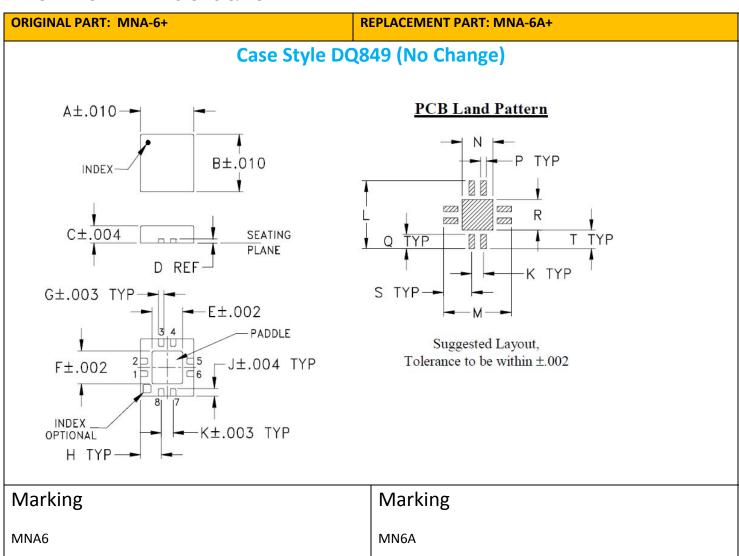


APPLICATION NOTE

REPLACEMENT PART REFERENCE GUIDE, MNA-6+


AN-60-078

ORIGINAL PART: MNA-6+
REPLACEMENT PART: MNA-6A+

Replacement Part has been judged by Mini-Circuits Engineering as a suitable replacement to Original Parta

MECHANICAL DIMENSIONS & PCB LAND PATTERN

Notes

APPLICATION NOTE

CONCLUSION:

1) FORM-FIT-FUNCTIONAL COMPATIBLE_a:

Replacement part is Form, Fit compatible. Following is a summary of changes/improvements:

Typical performance comparison: See paragraphs 2 to 5

Min/Max Specifications, Thermal Resistance and Max Tj- see below:

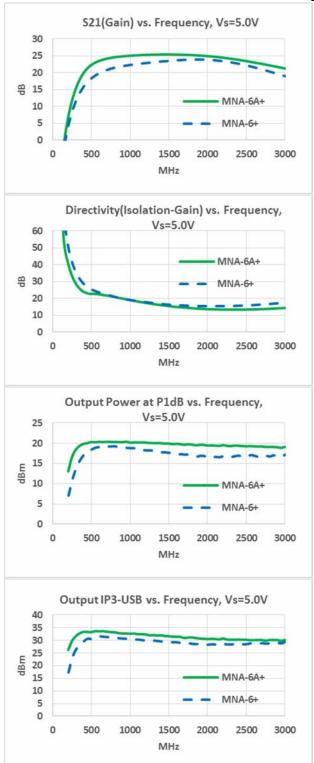
Parameter	Original Part (MNA-6+)	Replacement Part (MNA-6A+)
Gain-Min at 2 GHz (dB)	21.5	22.3
Thermal resistance (°C/W)	78	46
Maximum DC Voltage on pins 2 & 5 (V)	10	1
Power Dissipation (W)	0.5	0.97

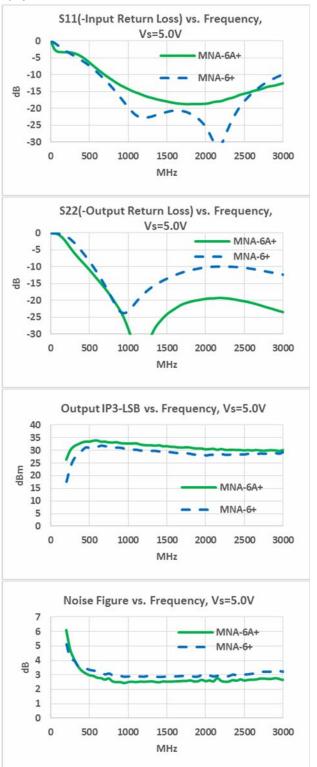
2) <u>PERFORMANCE COMPARISON_a (TYPICAL), DC Voltage=5V:</u>

		MNA-6+			MNA-6A+			
	Freq.	(Priginal Par	•	Replacement Part			
Parameter	MHz		_		_			
	IVIITIZ	Data of 2 Units			Data of 5 units			
	500	Min 18.2	Average 18.3	Max	Min 22.3	Average 22.4		
Gain (dB)	750		21.1	18.4 21.2			22.5	
		20.9	22.2		24.4	24.5	24.5	
	1000	22.0		22.3	25.0	25.1	25.1	
	1500	23.2	23.3	23.5	25.3	25.4	25.4 25.0	
	2000	23.3	23.6	23.9	24.8	24.9		
	2500	21.4	21.8	22.2	23.2	23.3	23.5	
	500	7.3	7.5	7.6	6.3	6.4	6.5	
	750	12.8	13.0	13.3	10.9	11.0	11.1	
Input Return Loss (dB)	1000	19.7	20.2	20.6	14.2	14.3	14.4	
	1500	20.5	20.7	21.0	17.4	17.7	17.9	
	2000	25.5	26.1	26.7	17.6	18.2	18.6	
	2500	16.0	16.8	17.7	14.9	15.6	16.5	
	500	8.5	8.6	8.6	10.9	11.1	11.2	
	750	17.7	17.7	17.7	17.8	17.9	18.0	
Output Return Loss (dB)	1000	22.8	22.9	23.0	27.2	27.5	28.3	
	1500	13.2	13.3	13.4	24.1	24.8	25.2	
	2000	10.1	10.2	10.2	19.5	19.7	20.2	
	2500	10.3	10.5	10.7	19.4	19.9	20.2	
	500	18.2	18.3	18.5	20.3	20.3	20.4	
Outract Davis at 4 dD	750	18.9	19.1	19.3	20.3	20.3	20.4	
Output Power at 1dB	1000	18.4	18.6	18.8	20.2	20.2	20.2	
Compression (dBm)	1500	17.2	17.5	17.7	19.9	19.9	19.9	
	2000	16.1	16.3	16.5	19.4	19.5	19.5	
	2500	16.3	16.5	16.7	19.2	19.3	19.3	
Output IP3 (dBm)	500	30.1	30.3	30.5	33.2	33.4	33.6	
	750	30.8	31.0	31.2	33.0	33.1	33.3	
	1000	30.1	30.3	30.4	32.4	32.6	32.7	
	1500	28.8	29.1	29.3	31.4	31.6 30.5	31.7 30.6	
	2000	27.6	27.8	28.0	30.4			
	2500	29.6	29.8	30.0	30.0	30.1	30.3	
NF (dB)	500	3.4	3.4	3.4	3.0	3.0	3.1	
	750	3.1	3.1	3.1	2.7	2.7	2.8	
	1000 1500	2.9	2.9 2.9	3.0 2.9	2.5	2.6 2.6	2.6	
	2000	2.9	2.9	3.0	2.5	2.6	2.6	
	2500	3.0	3.1	3.1	2.6	2.7	2.7	
	500	25.2	25.3	25.4	22.1	22.5	22.8	
	750	21.5	25.3	21.8	21.1	21.4	21.5	
Directivity (Isolation- Gain) (dB)	1000	19.2	19.2	19.2	18.7	19.0	19.1	
		16.5						
	1500 2000	15.6	16.5 15.8	16.6 16.0	15.1	15.4 13.6	15.6 13.8	
	2500	16.0	16.3	16.6	13.3 13.2	13.6	13.6	
DC Current (mA)	DC	73.8	75.5	77.1	97.8	98.6	99.3	

Notes:
a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

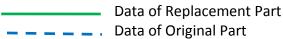
3) PERFORMANCE COMPARISON_a (TYPICAL), DC Voltage=2.8V:

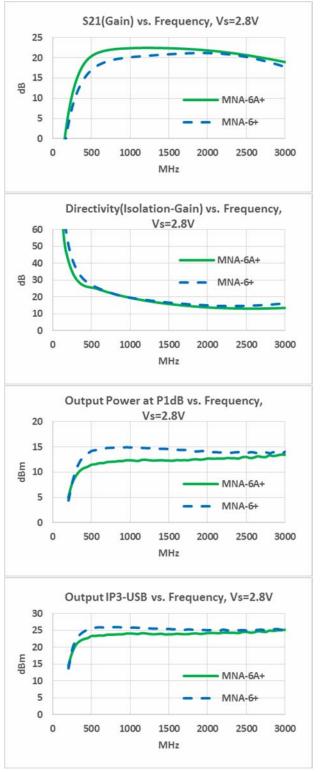

		MNA-6+		MNA-6A+			
Danamatan	Freq.	o	riginal Pa	rt	Replacement Part		
Parameter	MHz	Data of 2 Units			Data of 5 units		
		Min	Average		Min	Average	
	500	16.8	16.9	17.1	20.4	20.5	20.6
Gain (dB)	750	19.1	19.3	19.4	22.0	22.0	22.1
	1000	19.9	20.0	20.2	22.3	22.4	22.4
	1500	20.5	20.7	20.9	22.3	22.4	22.4
	2000	20.7	20.9	21.2	21.6	21.8	21.9
	2500	19.5	19.9	20.2	20.4	20.6	20.7
	500	7.0	7.2	7.3	6.9	6.9	7.0
	750	11.7	12.0	12.2	11.2	11.3	11.4
Input Poturn Loce (dR)	1000	16.6	17.0	17.3	13.9	14.0	14.1
Input Return Loss (dB)	1500	23.3	23.4	23.4	16.3	16.6	16.8
	2000	35.0	37.2	39.4	17.5	17.7	18.1
	2500	16.1	16.8	17.4	15.4	16.2	16.9
	500	8.6	8.7	8.8	9.8	10.0	10.1
	750	15.1	15.2	15.2	13.3	13.6	13.8
Output Return Loss (dB)	1000	14.5	14.7	14.8	14.9	15.2	15.5
Odiput Neturi Loss (db)	1500	10.4	10.5	10.6	15.3	15.6	15.9
	2000	8.4	8.4	8.5	14.8	15.1	15.4
	2500	8.0	8.1	8.1	15.2	15.7	16.0
Output Power at 1dB	500	14.2	14.2	14.2	11.1	11.3	11.5
	750	14.7	14.8	14.8	11.6	11.9	12.1
	1000	14.7	14.8	14.9	11.9	12.2	12.4
Compression (dBm)	1500	14.2	14.4	14.6	11.8	12.1	12.3
	2000	13.4	13.7	13.9	12.2	12.5	12.7
	2500	13.3	13.5	13.8	12.5	12.8	13.0
	500	25.7	25.7	25.7	22.8	23.1	23.4
	750	26.0	26.0	26.0	23.3	23.6	23.7
Output IP3 (dBm)	1000	25.8	25.8	25.8	23.7	23.9	24.1
Output IP3 (dbiii)	1500	25.3	25.4	25.5	23.5	23.7	23.9
	2000	24.8	24.9	25.0	23.8	24.0	24.2
	2500	24.0	24.1	24.1	24.1	24.3	24.5
NF (dB)	500	3.4	3.4	3.4	3.1	3.1	3.2
	750	3.1	3.1	3.1	2.8	2.8	2.9
	1000	3.0	3.0	3.0	2.6	2.6	2.7
	1500	2.9	2.9	3.0	2.6	2.7	2.7
	2000	2.9	2.9	3.0	2.7	2.7	2.7
	2500	3.1	3.1	3.1	2.7	2.8	2.8
	500	27.0	27.1	27.2	24.9	25.3	25.7
Directivity (Isolation- Gain) (dB)	750	22.4	22.5	22.6	22.0	22.3	22.5
	1000	19.7	19.7	19.8	19.2	19.5	19.6
	1500	16.8	16.8	16.9	15.5	15.8	16.0
	2000	15.2	15.3	15.3	13.6	13.8	14.1
	2500	15.0	15.2	15.4	13.0	13.1	13.3
DC Current (mA)	I(mA)	66.6	68.3	69.9	91.4	92.0	92.7

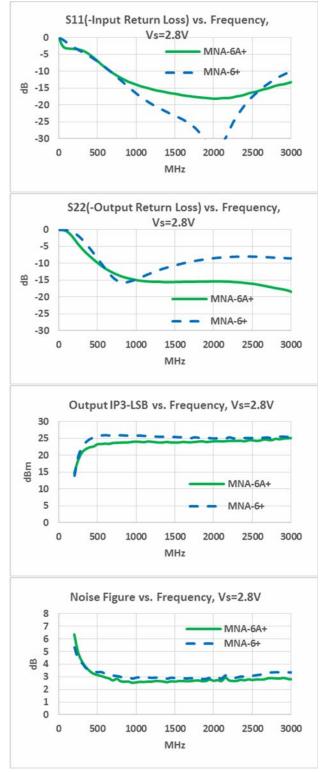


4) PERFORMANCE COMPARISON CURVES_a (TYPICAL), DC Supply=5V:

Data of Replacement PartData of Original Part




Notes:



5) PERFORMANCE COMPARISON CURVES_a (TYPICAL), DC Supply=2.8V:

Notes:

APPLICATION NOTE

IMPORTANT NOTICE

© 2015 Mini-Circuits

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefore.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms_of_use.html.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

Notes