

PART NUMBER, VSWA2-63DR+:

AN-80-010

Due to obsolescence of the dice used in Current part (Current Fab), a new set of dice in a nearly identical package (Future Fab/Replacement Fab) has been qualified and has replaced the current part.

Performance of Part with Replacement Die set has been judged by Mini-Circuits Engineering as a close alternative to current part_a

MECHANICAL DIMENSIONS & PCB LAND PATTERN

CURRENT FAB:	FUTURE FAB:					
Case Style: DG1235	Case Style: DG1235-1 (minor dimensional changes as below)					
MECHANICAL DRAWING & PCB LAND PATTERN						
NDEX AREA B 4x ØS PTH Q TYP G TYP SEATING PLANE Suggested Layout, Tolerance to be within ±.002						
Inches (mm)						
E & F J Q	E&F J Q					
0.085	0.106					
Note: 1) Dimensions not shown are the same as in DG1235 2) Mini-Circuits experiment shows part can fit into existing PCB Land pattern						

Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

CONCLUSION:

Following are summary of changes:

FORM: No change.

FIT: Mechanical Dimensions of Device and customer PCB Land Pattern as noted in

previous page.

FUNCTION: Following are the changes

Parameter	CURRENT FAB	REPLACEMENT PART
Control Voltage: High VDD= + 4 to +5V	2.7V min & VDD max	3.5V min to VDD max
Supply Current	12µА Тур.	50uA Typ.

Typical performance differences, see paragraphs 2 to 4.

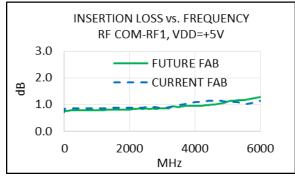
Replacement part is qualified to the current part as a close alternative ^a.

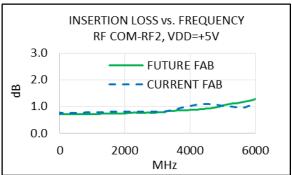
Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

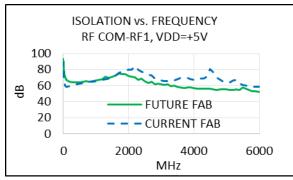
2) PERFORMANCE COMPARISON, TYPICAL AT VDD=+5V at 25°Ca

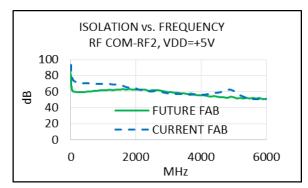
	MHz		Future Fab Current Fab	
Parameter	From	To	Average	Average
Insertion Loss	0.3	500	0.74	0.83
RF-COM to RF1	500	2000	0.77	0.87
	2000	3000	0.83	0.89
	3000	4000	0.90	0.97
	4000	6000	1.04	1.10
Insertion Loss	0.3	500	0.70	0.75
RF-COM to RF2	500	2000	0.72	0.78
	2000	3000	0.77	0.80
	3000	4000	0.83	0.89
	4000	6000	1.01	1.03
Isolation	0.3	500	76.9	70.5
RF-COM to RF1	500	2000	70.4	69.5
	2000	3000	66.7	75.1
	3000	4000	58.6	67.3
	4000	6000	55.6	65.8
Isolation	0.3	500	69.7	82.3
RF-COM to RF2	500	2000	62.9	68.2
	2000	3000	61.9	60.4
	3000	4000	57.6	56.7
	4000		52.6	55.8
Isolation	0.3	500	70.9	71.1
RF1 ro RF2 (RF1 ON)	500	1000	59.6	58.3
	1000	2000	56.0	52.6
	2000	3000	52.2	48.3
	3000	4000	49.8	45.8
	4000		46.4	44.0
Isolation	0.3	500	78.1	80.6
RF1 ro RF2 (RF2 ON)	500	1000	61.2	59.1
14 110142 (14 2 014)	1000	2000	56.8	53.4
	2000		52.3	48.8
	3000	4000	49.6	45.6
	4000		45.9	42.5
Return Loss	0.3	500	23.6	23.5
RF COM (RF1 ON)	500	2000	23.7	24.1
Tu com (ru rore)	2000	3000	22.4	25.4
	3000		18.7	17.3
	4000		19.0	18.6
Return Loss	0.3	500	23.4	23.2
RF COM (RF2 ON)	500	2000	23.3	24.1
TU COM (TU Z OIV)	2000	3000	23.0	22.0
	3000		18.9	15.7
	4000		20.2	17.8
Return Loss	0.3	500	23.6	23.6
RF1 ON	500	2000	22.6	25.0
IN I ON	2000	3000	21.2	24.1
	3000	4000	22.8	25.7
	4000		20.3	25.0
Return Loss	0.3	500	23.3	23.1
RF2 ON	500	2000	23.3	22.3
NFZ UN				22.3
		3000		-
		4000		22.5
Poturn Loca	4000	6000	21.2	22.8
Return Loss	500	2000	23.8	15.7
RF1 OFF	2000	3000	33.1	16.4
	3000	4000	22.4	20.3
Determination of	4000	6000	23.0	21.2
Return Loss	500	2000	23.0	15.1
RF2 OFF	2000	3000	34.4	16.4
	3000	4000	24.8	20.8
L	4000	6000	26.5	27.4

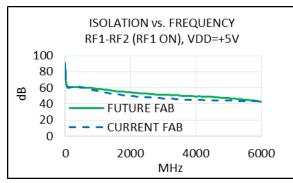
a. Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

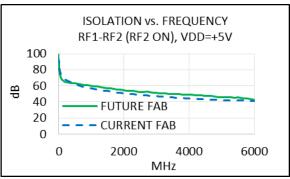

3) PERFORMANCE COMPARISON, TYPICAL AT VDD=+3V at 25°Ca

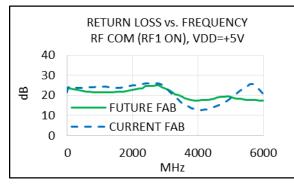

	М	Hz	Future Fab	Current Fab
Parameter	From		Average	Average
Insertion Loss	0.3	500	0.73	0.82
RF-COM to RF1	500	2000	0.76	0.86
	2000	3000	0.82	0.88
	3000	4000	0.89	0.99
	4000	6000	1.05	1.14
Insertion Loss	0.3	500	0.67	0.74
RF-COM to RF2	500	2000	0.70	0.77
	2000	3000	0.75	0.79
	3000	4000	0.81	0.91
	4000	6000	1.01	1.07
Isolation	0.3	500	76.6	80.2
RF-COM to RF1	500	2000	69.6	67.8
	2000	3000	67.1	60.6
	3000	4000	59.1	57.0
	4000	6000	54.7	55.8
Isolation	0.3	500	69.4	69.4
RF-COM to RF2	500	2000	62.7	69.3
	2000	3000	62.1	77.0
	3000	4000	57.7	68.2
	4000		52.9	65.2
Isolation	0.3	500	70.3	71.1
RF1 ro RF2 (RF1 ON)	500	1000	59.5	58.3
	1000	2000	56.0	52.6
	2000	3000	52.3	48.3
	3000	4000	49.9	45.9
	4000	6000	46.3	44.3
Isolation	0.3	500	76.9	79.2
RF1 ro RF2 (RF2 ON)	500	1000	61.0	59.1
	1000		56.7	53.3
	2000	3000	52.5	48.8
	3000	4000	49.9	45.7
	4000		46.0	42.8
Return Loss	0.3	500	23.7	23.7
RF COM (RF1 ON)	500	2000	24.1	24.4
	2000	3000	23.0	25.7
	3000	4000	18.8	16.4
	4000		19.2	17.5
Return Loss	0.3	500	23.8	23.4
RF COM (RF2 ON)	500	2000	23.8	24.5
	2000	3000	23.4	22.5
	3000		18.9	15.1
D / 1	4000		20.3	16.2
Return Loss	0.3	500	23.6	23.8
RF1 ON	500	2000	23.2	26.0
	2000	3000	22.2	26.3
	3000		23.8	25.7
Detum Less	4000		21.2	25.9
Return Loss	0.3	500	23.7	23.3
RF2 ON	500	2000	23.1	22.9
		3000	23.2	24.1
		4000	28.0	22.4
Poturn Locc	4000		22.4	21.2
Return Loss RF1 OFF	500	2000		16.0
NE I UFF	2000		32.0	16.9
	3000		22.0	21.8
Poturn Locc	4000		22.5 22.7	22.8
Return Loss	500	2000		15.4
RF2 OFF	2000	3000	33.4	17.0
	3000 4000		24.5	22.2
	4000	6000	26.0	27.4

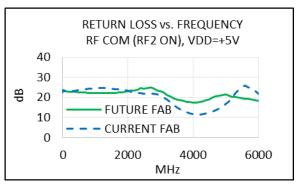

a. Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

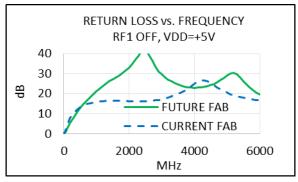


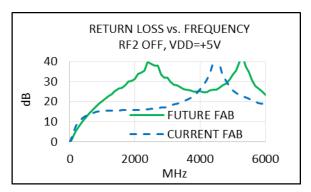

PERFORMANCE COMPARISON CURVES a, CURRENT FAB vs. FUTURE FAB: VDD=+5V

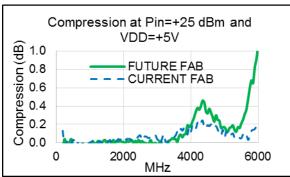


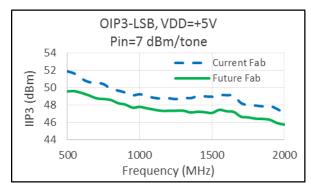


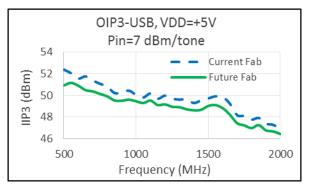


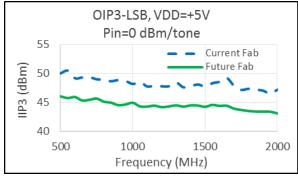


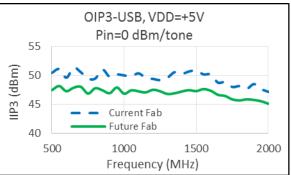


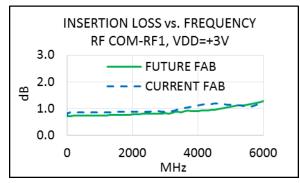


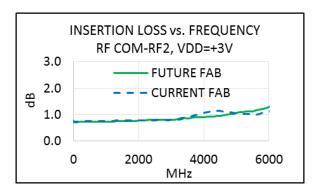

Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

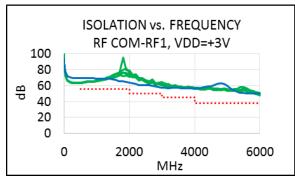


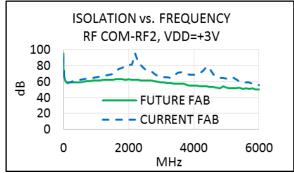


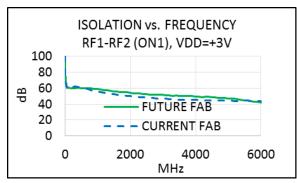


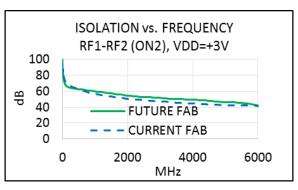


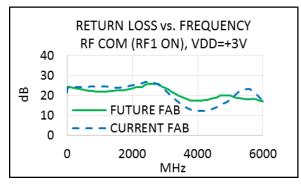


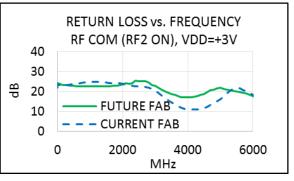

Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

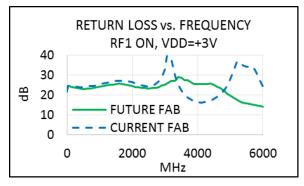


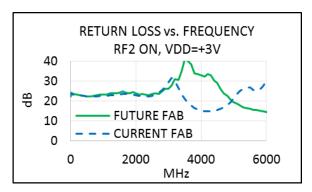

5) PERFORMANCE COMPARISON CURVES a, CURRENT FAB vs. FUTURE FAB: VDD=+3V

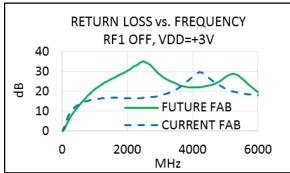


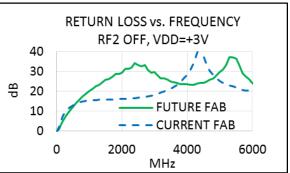




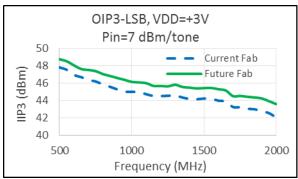


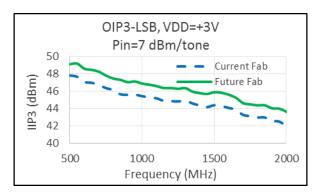


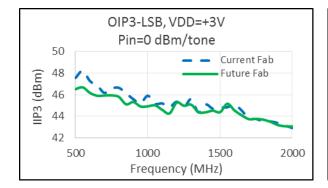


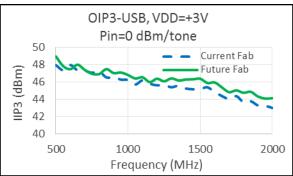

a. Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.











Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

IMPORTANT NOTICE

© 2015 Mini-Circuits

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein. Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefore.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms_of_use.html.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

Notes:

 Suitability for model with new die must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.