Mini-Circuits

Coupler Theoretical Main-Line Loss Calculation (AN-30-004)

1. Introduction

The main-line loss of a coupler is defined as the loss between the input and output ports. Theoretical loss is defined as that of a perfect (lossless) coupler, for which the input power is the sum of the (main-line) output power and the power at the coupled port. Therefore, the theoretical main-line loss is dependent upon the fraction of the input power that is outputted at the coupled port. The conversion between them can be expressed mathematically. This application note derives the formula and provides a conversion table.

2. Derivation

A lossless coupler transfers all input power to the output and coupled ports:

$$P_{\rm in} = P_{\rm out} + P_{\rm coupled} \tag{1}$$

In practice, positive decibel values are given for main-line loss and coupling (the fraction of the input power that is outputted at the coupled port):

ML (main-line loss in dB) =
$$10 \log_{10}(P_{in} / P_{out})$$
, and (2)

CPL (coupling in dB) =
$$10 \log_{10} (P_{in} / P_{coupled})$$
 (3)

With these three equations, the CPL to ML conversion can be obtained.

From equation (1),
$$P_{out}/P_{in} = 1 - P_{coupled}/P_{in}$$
 (4)

From equation (3),
$$P_{coupled} / P_{in} = 10^{-CPL/10}$$
 (5)

Substitute (4), and then (5), into (2):

$$ML = 10 \log_{10} (P_{in} / P_{out}) = 10 \log_{10} [1/(1 - P_{coupled}/P_{in})]$$
$$= 10 \log_{10} [1/(1 - 10^{-CPL/10})]$$
(6)

3. Insertion Loss vs. Coupling table

Coupling	Insertion Loss
dB	dB
3	3.021
3.5	2.570
4	2.205
4.5	1.903
5	1.651
5.5	1.438
6	1.256
6.5	1.101
7	0.967
7.5	0.850
8	0.749
8.5	0.661
9	0.584
9.5	0.517
10	0.458
10.5	0.405
11	0.359
11.5	0.319
12	0.283
12.5	0.251
13	0.223
13.5	0.198
14	0.176
14.5	0.157
15	0.140
15.5	0.124
16	0.110
16.5	0.098

Coupling	Insertion Loss
dB	dB
17	0.088
17.5	0.078
18	0.069
18.5	0.062
19	0.055
19.5	0.049
20	0.044
20.5	0.039
21	0.035
21.5	0.031
22	0.027
22.5	0.024
23	0.022
23.5	0.019
24	0.017
24.5	0.015
25	0.014
25.5	0.012
26	0.011
26.5	0.010
27	0.009
27.5	0.008
28	0.007
28.5	0.006
29	0.005
29.5	0.005
30	0.004

🖵 Mini-Circuits

© 2015 Mini-Circuits

IMPORTANT NOTICE

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefor.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms_of_use.html.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.