

13 Neptune Ave. Brooklyn NY 11235 Tel. (718) 934-4500 Fax. (718) 332-4661 Website: <u>www.minicircuits.com</u>

PRODUCT CHANGE NOTICE PCN Form (D4-E000-73)

PCN#18-047

NOTIFICATION DATE: April 26, 2018

MODEL(S) AFFECTED:

ROS-3000-619+

EXTENT OF CHANGE:

- 1. Replacement of supplied transistor and varactor diode based on discontinuation of supply with alternate, qualified components.
- 2. Change of internal component values to optimize replacement parts

EFFECT OF CHANGE:

No change in FIT or FORM, shift in performance per table below:

Parameters	Original Performance	New Performance						
DC Current	28.4 to 28.6 mA	30.7 to 31.1 mA						
2nd Harmonic	-24.29 to -20.35 dBc	-38.95 to -30.46 dBc						
3rd Harmonic	-38.79 to -27.64 dBc	-32.5 to -21.66 dBc						
NT 1 '		. 11 .						

No change in specs. No change in internal or external layout.

REASON FOR CHANGE:

Obsolescence of supplied components

EFFECTIVE DATE OF CHANGE:

Pending stock depletion. last date code of old design DC 1742

ATTACHMENTS:

Data available to support the change See updated datasheets below for change in performance.

QUESTIONS?

PLEASE CONTACT US.

AS 9100 ISO 9001 ISO 14001 Certified

PCN18-047.doc Rev.: A M135112 (01/16/12) File: PCN18-047.doc This document and its contents are the property of Mini-Circuits.

13 Neptune Ave. Brooklyn NY 11235 Tel. (718) 934-4500 Fax. (718) 332-4661 Website: <u>www.minicircuits.com</u>

PRODUCT CHANGE NOTICE PCN Form (D4-E000-73)

Surface Mount Voltage Controlled Oscillator

5V Tuning for PLL ICs 2800 to 2970 MHz

Features

- high power output, +10 dBm typ.
- · linear tuning characteristics
- low phase noise, -101 dBc/Hz typ. @ 10kHz offset
- low pushing, 1.5 MHz/V typ. aqueous washable

Applications

- · wireless communications
- satellite systems

Electrical Specifications

ROS-3000-619+

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

CASE STYLE: CK605

FREQ. POWER PHASE NOISE TUNING NON HARMONICS PULLING PUSHING DC MODEL OPERATING (MHz) OUTPUT dBc/Hz SSB at offset HARMONIC (dBc) pk•pk (MHz/V) NO. SPURIOUS (dBm) frequencies.kHz VOLTAGE SENSI- PORT 3 dB @ 12 dBr POWER (MHz) TIVITY CAP MODULATION RANGE (dBc) Тур. ŝ (MHz/V) (pF) BANDWIDTH Vcc Current (MHz) volts) (mA) Min. Max Тур. 1 10 100 1000 Min. Max. Тур. Тур Тур. Тур. Max Тур Тур Max Тур ROS-3000-619+ 2800 2970 +10 -72 -101 -123 -144 0.55 50-70 150 -90 -25 -15 13 4 1.5 $\overline{5}$ 36

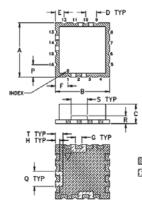
Maximum Ratings

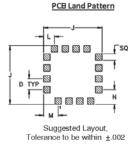
Operating Temperature

Absolute Max. Supply Voltage (Vcc)

Absolute Max. Tuning Voltage (Vtune)

ent damage may occur if any of these limits are


Storage Temperature


All specifications

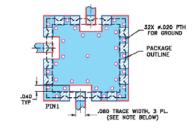
Pin Connections

RF OUT	10
VCC	14
V-TUNE	2
GROUND	1,3,4,5,6,7,8,9,11,12,13,15,16

Outline Drawing

METALLIZATION SOLDER RESIST

Outline Dimensions (inch)


В С D E G н J к N Р L м 0 R S wt. .500 .500 .180 .100 .080 .115 .060 .040 .540 .060 .100 .135 .135 .115 .140 .070 .150 .070 grams 12.70 12.70 4.57 2.54 2.03 2.92 1.52 1.02 13.72 1.52 2.54 3.43 3.43 2.92 3.56 1.78 3.81 1.78

Tape & Reel: F37

7" Reels with 10, 20, 50, 100 devices 13" Reels with 200, 500 devices

Environmental Ratings: ENV65

Demo Board MCL P/N: TB-10 Suggested PCB Layout (PL-012)

NOTES;

-55°C to 85°C

7V

7V

-55°C to 100°C

50 ohm system

 TRACE WIDTH IS SHOWN FOR FR4 WITH DIELECTRIC THICKNESS. 0.30" ± .002"; COPPER: 1/2 02. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.
 BOTTOM SIDE OF THE BOTTOM IS CONTINUOUS GROUND PLANE. DENOTES PCB COPPER LAYOUT WITH SMOBC (SOLDER MASK OVER BARE COPPER)

DENOTES COPPER LAND PATTERN FREE OF SOLDER MASK

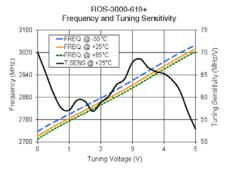
ISO 9001 CERTIFIED

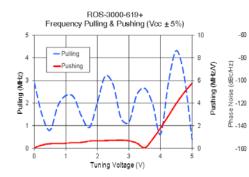
PCN18-047.doc Rev.: A M135112 (01/16/12) File: PCN18-047.doc This document and its contents are the property of Mini-Circuits.

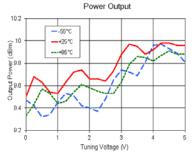
Refer to Procedure: D3-E040

 13 Neptune Ave.
 Brooklyn NY 11235

 Tel. (718) 934-4500
 Fax. (718) 332-4661
 Website: www.minicircuits.com

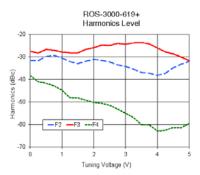

PRODUCT CHANGE NOTICE PCN Form (D4-E000-73)

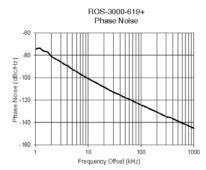

Performance Data & Curves*


ROS-3000-619+

V TUNE	TUNE SENS (MHz/V)		EQUEN (MHz)	СҮ	POWER OUTPUT Icc (dBm) (mA)			lee (mA)	HARMONICS (dBc)			FREQ. PUSH (MHz/V)	FREQ. PULL (MHz)	PI	HASE NO at o	FREQ OFFSET (kHz)	PHASE NOISE at 2885 MHz		
	(14112/4)	-55°C	+25°C	+85°C	-55°C	+25°C	+85°C		F2	F3	F4	(1911/2017)	(10112)	1kHz	10kHz	100kHz	1MHz	(KH2)	(dBc/Hz)
0.00 0.50 0.75 1.00 1.25 1.50 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00	70.14 60.94 57.59 57.12 59.33 59.09 56.86 58.82 60.22 62.80 64.05 67.78 68.54 66.67 65.72 65.28	2737.3 2770.0 2784.6 2799.1 2813.9 2828.7 2842.8 2857.1 2871.9 2887.4 2903.3 2920.0 2936.9 2953.6 2970.1	2720.4 2754.3 2769.6 2798.2 2813.1 2827.8 2842.1 2856.8 2871.8 2867.5 2903.5 2920.5 2920.5 2937.6 2954.3	2709.8 2744.3 2760.0 2774.8 2789.0 2803.3 2818.2 2832.6 2847.2 2862.1 2877.4 2893.4 2909.7 2926.9 2943.9	9.47 9.32 9.34 9.45 9.53 9.51 9.42 9.40 9.42 9.40 9.40 9.48 9.65 9.74 9.72 9.69 9.81 9.96	9.50 9.63 9.54 9.53 9.63 9.72 9.74 9.66 9.66 9.64 9.73 9.88 9.97 9.88 9.97 9.88 9.97	9.33 9.57 9.53 9.44 9.54 9.54 9.56 9.55 9.55 9.53 9.53 9.79 9.86 9.85 9.85	30.78 30.76 30.82 30.84 30.80 30.77 30.74 30.75 30.78 30.79 30.77 30.77 30.71 30.67 30.71 30.67 30.73 30.68	-2 -31.5 -29.8 -29.3 -30.5 -32.1 -33.0 -31.9 -31.1 -31.5 -32.2 -33.5 -34.2 -35.5 -34.2 -36.9 -37.2 -38.2	-27.4 -26.7 -27.8 -28.2 -28.2 -28.2 -28.2 -28.2 -24.7 -25.9 -24.7 -24.9 -24.4 -23.8 -23.6 -24.2 -26.0	-38.3 -41.7 -42.9 -48.3 -48.2 -48.3 -50.3 -50.6 -51.5 -53.2 -55.0 -57.0 -60.1 -60.2 -62.9	0.06 0.41 0.43 0.45 0.51 0.52 0.65 0.68 0.69 0.71 0.73 0.67 0.46 0.06 0.06 0.82 1.80	2.92 0.80 1.89 2.33 2.26 1.41 0.93 2.03 3.20 2.81 1.31 1.16 2.38 2.65 1.96 0.62	-73.48 -73.29 -74.25 -73.93 -73.61 -72.22 -72.25 -73.29 -73.54 -71.85 -72.22 -70.57 -72.44 -72.37 -71.55 -72.47	-102.2 -102.2 -102.2 -102.5 -102.4 -102.0 -101.5 -101.4 -101.5 -101.3 -101.3 -100.8 -100.7 -100.1 -100.4 -99.8 -99.0	-124.7 -124.7 -125.0 -125.3 -124.7 -124.5 -124.3 -124.9 -124.9 -124.9 -124.5 -124.9 -124.5 -124.7 -124.3 -124.1 -124.3 -124.1 -124.3 -124.3 -123.3 -123.0	-144.9 -145.4 -145.4 -145.7 -144.9 -145.2 -145.3 -145.3 -145.3 -145.3 -145.3 -145.3 -145.3 -145.3 -145.4 -145.3 -145.4 -145.3 -145.4 -145.3 -145.4 -145.3 -145.4 -145.3 -145.4 -145.3 -145.4 -145.4 -145.2 -145.4 -145.2 -145.4 -145.4 -145.7 -145.9 -145.4 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -145.7 -145.9 -1	1.0 2.0 3.5 6.0 8.5 10.0 20.8 35.5 60.7 86.7 86.7 100.0 148.1 177.0 211.6 302.4 361.5	-74.51 -88.00 -88.00 -94.49 -99.00 -100.91 -108.90 -114.38 -119.42 -123.02 -124.46 -122.48 -131.26 -134.94 -135.68
4.25 4.50	63.96 61.50				9.97 9.93	9.98 9.98	9.87 9.91	30.62 30.58	-37.3 -34.8	-27.8 -28.6	-62.6 -61.4	2.88 3.97	2.91 4.32	-70.01 -68.61	-98.6 -97.3	-122.1 -121.1	-142.9 -141.6	507.5 606.7	-138.84 -140.64
4.75 5.00	56.83 52.89	3033.1 3047.0	3018.4 3032.6	3008.2 3022.8	9.89 9.81	9.96 9.96	9.88 9.88	30.57 30.57	-33.3 -32.0	-30.1 -31.7	-61.5 -59.6	4.94 5.76	3.17 0.38	-67.71 -69.73	-96.3 -96.1	-120.3 -120.0	-141.0 -140.7	851.6 1000.0	-143.68 -143.68

*at 25°C unless mentioned otherwise




ROS-3000-619+

Phase Noise Vs. Tuning Voltage

Tuning Voltage (V)

BOS-3000-619+

ISO 9001 CERTIFIED

-60

-80

100

-120

-160

PCN18-047.doc Rev.: A M135112 (01/16/12) File: PCN18-047.doc This document and its contents are the property of Mini-Circuits.

Refer to Procedure: D3-E040