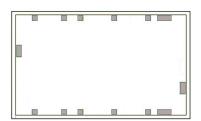
NON-CATALOG

Wideband, Microwave, 0.5W


Monolithic Amplifier Die

AVM-273HP-D+

50Ω 13 to 26.5GHz

The Big Deal

- Wideband 13 to 26.5 GHz
- Output power up to +27dBm
- Excellent directivity, 58 dB typ. @ 20 GHz
- Unconditionally stable
- Excellent gain flatness, ±1.1 dB
- Sequencing and DC Control module (VCM-1+) is available

Product Overview

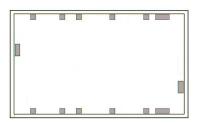
Mini-Circuits AVM-273HP-D+ is a three stage balanced, wideband monolithic amplifier die delivering up to 0.5W power and operating over 13 to 26.5 GHz. It is designed using PHEMT technology and is unconditionally stable. Its outstanding isolation enables it to be used as a wideband isolation amplifier or buffer amplifier in a variety of microwave systems including point to point radios, military EW and radar, DBS, and VSAT.

Key Features

Feature	Advantages
Wideband	Wide frequency coverage up to 26.5 GHz supports many microwave applications.
Pout up to +27 dBm	Can be used as a low-cost driver for high power amplifiers.
Excellent active directivity, 58 dB @ 20 GHz (directivity = isolation – gain)	Can be used as an inter-stage isolation amplifier, minimizing interaction of adjacent components.
Voltage Sequencing and DC control module (VCM-1+) - sold separetely	Provides correct voltage sequence and DC control, as well as reverse polarity protection replacing over 20 discrete components and greatly simplifying circuit design.
Unpackaged Die	Enables user to integrate amplifier directly into hybrids.

NON-CATALOG

Wideband, Microwave, 0.5W

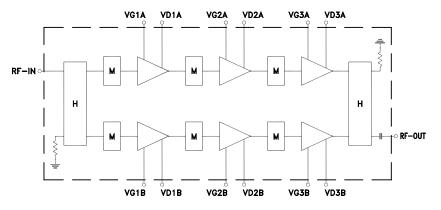

Monolithic Amplifier Die AVM-273HP-D+

Product Features

- · Gain, 13 dB typ.
- Output Power, up to +27 dBm typ.
- Excellent directivity, 58 dB typ. at 20 GHz
- Unconditionally Stable

Typical Applications

- Point to Point Radio
- Military EW and Radar
- DBS
- VSAT
- · Wideband Isolation amplifier


+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Ordering Information: Refer to Last Page

General Description

The AVM-273HP-D+ is a three stage balanced wideband monolithic amplifier die delivering up to 0.5W power operating over 13 to 26.5 GHz. It is manufactured using PHEMT technology and is unconditionally stable. Its outstanding isolation enables it to be used as a wideband isolation amplifier or buffer amplifier in a variety of microwave systems.

Simplified Schematic

Notes: H - 90° Hybrid M - Matching Network

Wideband Monolithic Amplifier Die

AVM-273HP-D+

Electrical Specifications (1) at 25°C, Zo=50 Ω , (refer to characterization circuit, Fig.1)

		1.0		,	11.2
Parameter	Condition (GHz)	Min.	Тур.	Max.	Units.
Frequency Range		13.0		26.5	GHz
DC Voltage (VD1 to VD3 (A)&(B))			5.0		V
DC Voltage (VG1 to VG3 (A)&(B)) ^			-0.8		V
DC Current (ID1+ID2+ID3; (A)&(B))		525	561	590	mA
DC Current (IG1+IG2+IG3; (A)&(B))	10.0		0.5		mA
	13.0	_	13.6		
	14.0	_	12.8		
	15.0	_	12.6		
Coin	16.0	_	12.9		dB
Gain	17.0	_	13.5		UB
	18.0 20.0	_	13.9 14.1		
	24.0	_	12.2		
	26.5	_	12.9		
	13.0	_	21.7		
	14.0		21.0		
	15.0		20.7		
	16.0		15.5		
Input Return Loss	17.0		14.4		dB
input Hotain 2000	18.0		12.7		d d d
	20.0		13.0		
	24.0		18.6		
	26.5		21.4		
	13.0		24.8		
	14.0		20.6		
	15.0		18.4		
	16.0		16.7		
Output Return Loss	17.0		14.4		dB
•	18.0		12.2		
	20.0		14.1		
	24.0		12.8		
	26.5		12.5		
Directivity (Isolation- Gain)	20.0		54		dB
	13.0		23.8		
	14.0		25.1		
	15.0		25.8		
	16.0		26.6		
Output Power @ 1 dB compression	17.0		27.2		dBm
	18.0		26.9		
	20.0		27.3		
	24.0		26.9		
	26.5		26.2		
	13.0		30.8		
	14.0		33.1		
	15.0		33.7		
O.D.	16.0		34.8		
OIP3	17.0		34.4		dBm
	18.0		34.8		
	20.0		33.2		
	24.0		31.3		
	26.4		30.9		
	13.0		10.8		
	14.0 15.0		10.5 10.2		
	16.0		9.8		
Noise Figure	17.0		9.6		dB
Noise i iguie	18.0		9.6		ub
	20.0		9.4		
	24.0		9.4		
	26.5		9.4		
DC Current Variation vs. Voltage	20.0		0.135		mA/mV
Thermal Resistance at Tj=87°C			16.3		°C/W
memai nesisiance at 1j=0/ C		1	10.3		U/VV

^{1.} Measured on Mini-Circuits Die characterization Test Board . See Characterization Test Circuit (Fig. 1), See cautionary note.

Wideband Monolithic Amplifier Die

AVM-273HP-D+

Absolute Maximum Ratings(2)

Operating Temperature (3)	-40°C to 85°C
Channel Temperature	136°C
DC Voltage-Drain @ VG=-0.8V (4)	+6 V
DC Voltage-Gate @ VD=+5V (5)	-6 V
Power Dissipation	3.1 W
DC Current	620 mA
Input Power (CW)	16 dBm
DC Voltage on RF-OUT PADS (@VD=5V & VG=-0.8V)	+10V

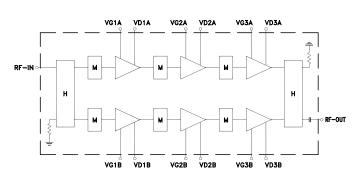
Notes:

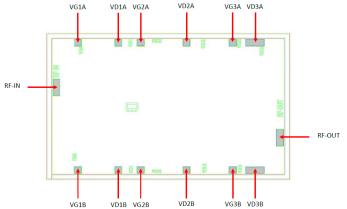
- 2. Permanent damage may occur if any of these limits are exceeded. These maximum ratings are not intended for continuous normal operation. Measured in industry standard 5x5x1mm package.
- 3. Defined with reference to ground pad temperature.
- VG=VG1, VG2, VG3 (A&B)
 VD= VD1, VD2, VD3 (A&B)

Bias Sequence and Conditions

NOTE: to prevent damage to the AVM-273HP-D+, and to ensure proper operation, all bias voltages must be applied in the following sequence for both Power On and for Power Off:

- Connect all Vg wires together (to ensure all stages are biased simultaneously).
 Connect all Vd wires together (to ensure all stages are biased simultaneously).
- 3. Set Vg to -2V, apply Vg
- 4. Set Vd to +5V, apply Vd
- 5. Adjust Vg until the desired I_{dd} is reached (the typical Vg is around -0.8V). 6. Apply RF signal.

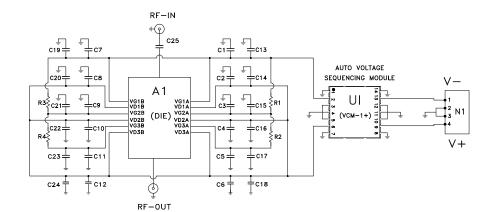

Power OFF


- 1. Turn OFF RF signal
- 2. Set Vg to -2.0V
- 3. Turn OFF Vd (Vd to 0V)
- 4. Turn OFF Vg (Vg to 0V)

ALTERNATELY - VCM-1+ module provide voltage sequencing and DC control automatically.

Following these requirements are required for proper operation and are a condition of Mini-Circuits Warranty.

Simplified Schematic and Pad Description


NUICS.
H - 90° Hybrid
M - Matching Network

Pad Function	Description (See Application Circuit)
RF-In	RF Input
RF-Out	RF-Output (DC blocked)
VG1 A	Gate Voltage of first stage amplifier (Top)
VG2 A	Gate Voltage of second stage amplifier (Top)
VG3 A	Gate Voltage of third stage amplifier (Top)
VD1 A	Drain Voltage of first stage amplifier (Top)
VD2 A	Drain Voltage of second stage amplifier (Top)
VD3 A	Drain Voltage of third stage amplifier (Top)

Pad Function	Description (See Application Circuit)
VG1 B	Gate Voltage of first stage amplifier (Bottom)
VG2 B	Gate Voltage of second stage amplifier (Bottom)
VG3 B	Gate Voltage of third stage amplifier (Bottom)
VD1 B	Drain Voltage of first stage amplifier (Bottom)
VD2 B	Drain Voltage of second stage amplifier (Bottom)
VD3 B	Drain Voltage of third stage amplifier (Bottom)

Wideballa Mollollalle Allipliller Die

Characterization Test Circuit

COMPONENT	VALUE/ PART NUMBER	SIZE
A1	AVM-273HP-D+	-
U1	VCM-1+	-
N1	CONN VERTICAL HEADER 4 POS	-
C1,C6,C7, C12-C24	0.1 uF	.04 X .02
C2-C5,C8-C11	470 pF	.02 X .01
C25	0.1 uF	.04 X .02
R1-R4	0 Ohm	.08 X .05

Fig. 1 Schematic of Test & Application Circuit

Test board used for characterization incorporates Current stabilization, automatic voltage sequencing, reverse voltage protection circuitry. Gain, Output power at 1dB compression (P1dB), Noise Figure, Output IP3 (OIP3) are measured using Agilent's N5247A PNA-X microwave network analyzer.

Conditions:

- 1. Gain: Pin=-25 dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. V+ set to +6.1V to account for 1.1V drop in bias circuit resulting in +5V at drain (VD1 to VD3 (A&B))
- 4. V- is set to -5V to realize proper gate voltage (-0.8V typ.)

NOTE 1: The voltage sequencing and DC control circuit is available as a self-contained, surface mount module, see page 8

Die Layout

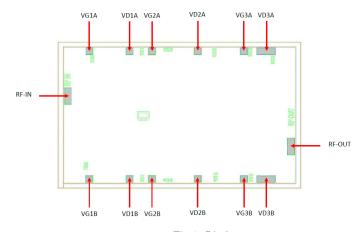


Fig 2. Die Layout

Bonding Pad Position

(Dimensions in µm, Typical)

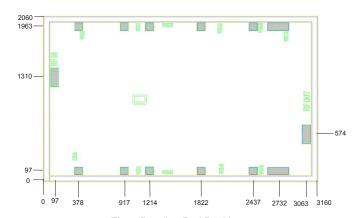


Fig 3. Bonding Pad Positions

Critical Dimensions

Official Difficiations	
Parameter	Values
Die Thickness, μm	100
Die Width, µm	3160
Die Length, μm	2060
Bond Pad Size-RF IN, RF OUT, µm	100 x 250
Bond Pad Size - VD3, μm	250 x 100
Bond Pad Size - VD, VG, µm	100 x 100

PCB Information

PCB material	Rogers 435013
Dielectric thickness	10 mil
Copper thickness (Top & Bottom)	0.5 oz.
Finish	ENIG

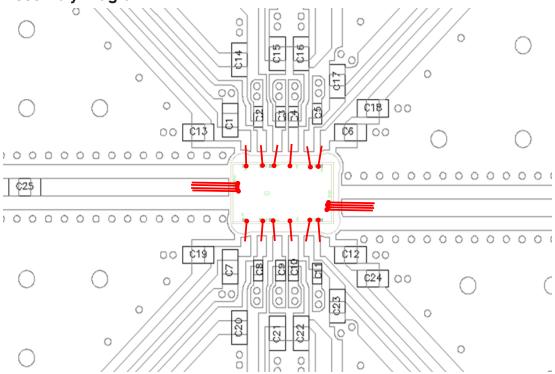
Assembly and Handling Procedure

1. Storage

Dice should be stored in a dry nitrogen purged desiccators or equivalent.

2. ESD

MMIC Gallium Arsenide (GaAs) amplifier dice are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be opened in clean room conditions at an appropriately grounded anti-static worksta tion. Devices need careful handling using correctly designed collets, vacuum pickup tips or sharp antistatic tweezers to deter ESD damage to dice.


3. Die Attach

The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are DieMat DM6030HK-PT/H579 or Ablestik 84-1LMISR4. Apply sufficient epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total die periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. It is recommended to use antistatic die pick up tools only.

4. Wire Bonding

Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the dice gold bond pads. Thermosonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1 mil diameter. Bonds must be made from the bond pads on the die to the package or substrate. All bond wires should be kept as short as low as reasonable to minimize performance degradation due to undesirable series inductance.

Assembly Diagram

Note: For component values, refer to Figure 1.

Four 1mil bond wires should be used for RF-IN and RF-OUT.

Recommended Wire Length, Typical

Wire	Wire Length (mm)	Wire Loop Height (mm)
RF-IN, RF-OUT, VD, VG	0.50	0.15

Additional Detailed Technical Information additional information is available on our dash board.				
	Data Table			
Performance Data	Swept Graphs			
	S-Parameter (S2P Files) Data Set with	S-Parameter (S2P Files) Data Set with and without port extension(.zip file)		
Case Style	Die			
	Quantity, Package	Model No.		
Die Ordering and packaging information	Small, Gel - Pak: 10,50,100 KGD* Medium [†] , Partial wafer: KGD*<360 Large [†] , Full Wafer	AVM-273HP-DG+ AVM-273HP-DP+ AVM-273HP-DF+		
mormation	†Available upon request contact sales representative			
	Refer to AN-60-067			
Environmental Ratings	ENV-80			

^{*}Known Good Dice ("KGD") means that the dice in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such dice fall within a predefined range. While DC testing is not definitive, it does help to provide a higher degree of confidence that dice are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

ESD Rating**

Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M2 (100 to <200V) in accordance with ANSI/ESD STM5.2-1999

** Measured in 5x5x1 mm package

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an "As is" basis, with all faults.
- E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Dice (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bond ing and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Dice.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

-40°C to 85°C

-40°C to 85°C

+7.4V

-6.0V

620 mA

Surface Mount

Sequencing & DC Control Module

Features

- Provides correct voltage sequence and DC control for the PHEMT amplifier AVM-273HP+
- Replaces over 20 discrete components
- Protection from reverse polarity

Applications

• AVM-273HP+ PHEMT Amplifier

VCM-1+

CASE STYLE: BG1482-1 PRICE: Contact Sales Dept.

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

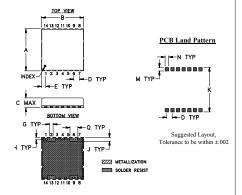
Pad Description

Maximum Ratings

Operating Temperature

Operating Temperature

Positve Input Voltage


Negative Input Voltage

Total DC

NEGATIVE OUTPUT	2
POSITIVE OUTPUT	6
POSITIVE INPUT	9
NEGATIVE INPUT	13
GND	1,3,4,5,7,8,10,11,12,14

Permanent damage may occur if any of these limits are exceeded.

Outline Drawing

Outline Dimensions (inch)

. 040 1.02	G .060 1.52	F 	E .075 1.91	.100 2.54	C .220 5.59	. 750 19.05	A . 750 19.05
wt grams	.140	P 	.061	.063	L 	.791	J .070

Electrical Specifications at 25°C

Parameter	Min.	Тур.	Max.	Units
Positive Input Voltage	+5.9	+6.1	+6.3	V
Negative Input Voltage	-5.5	-5.0	-4.5	V
Positive Output Voltage	_	+5.0	_	V
Negative Output Voltage	_	-0.8	_	V
Controlled DC from positive line	_	560	_	mA
Sinking DC to the negative line	_	-0.5	_	mA

Schematic (Negative Output) 2 O -O 13 (Negative Input) ₽10 -O 9 (Positive Input) Q2 (Positive Output) 6 O

BOM

SEQ	Manufacturer P/N	Description	Manufacturer
Q1,Q2	MMBT3906	PNP Transistor	Fairchild Semiconductor
Q3	MMBT3904	NPN Transistor	Fairchild Semiconductor
Q4	NTS4101PT1G	P-Channel MOSFET	ON Semiconductor
D1	MMSZ5228BT1G	Zener Diode	ON Semiconductor
D2-D4	MBR0520LT1G	Schottky Diode	ON Semiconductor
C26,C27	GRM1555C1H101GA01D	0402 Capacitor, 100 pF, 2%	Murata Electronics
C28,C29	GRM188R71C105KA12D	0603 Capacitor, 1µF	Murata Electronics
R1,R2,R9,R10	RK73H1JTTD1002F	0603 Resistor, 10kΩ	KOA Speer
R3-R5	RK73H2BTTD3R32F	1206 Resistor, 3.32 Ω	KOA Speer
R6	RK73H1JTTD1000F	0603 Resistor, 100 Ω	KOA Speer
R7	RK73H1JTTD1501F	0603 Resistor, 1.5 kΩ	KOA Speer
R8	RK73H1JTTD1001F	0603 Resistor, 1.0 kΩ	KOA Speer
R11	RK73Z2BTTD	1206 Resistor, 0 Ω	KOA Speer