SPDT RF SWITCH

Absorptive RF Switch with internal driver.
 Single Supply Voltage , +3V

Product Features

- Very Low Insertion loss over entire frequency range
- Super High Isolation over entire frequency range
- High Input IP3, +55 dBm typ.
- Single positive supply voltage, +3V
- Very low DC current consumption, $8 \mu \mathrm{~A}$
- Immune to latch up
- Unique design-simultaneous switch off of RF1\&RF2

HSWA2-30DR+

CASE STYLE: DG983-1

Typical Applications

- Base Station Infrastructure
- Portable Wireless
- CATV \& DBS
- MMDS \& Wireless LAN
- Band switch
- Diplexer switches
- Bypass switches

General Description

The HSWA2-30DR+ is a 50Ω high isolation SPDT RF switch designed for wireless applications, covering a broad frequency range from DC up to 3GHz with low insertion loss. The HSWA2-30DR+ operates on a single supply voltage +3 V . See application note $\mathrm{AN}-80-006$ for +5 V supply voltage. This unit includes an internal CMOS control driver with two-pins control. The switch consumes very low supply current, $8 \mu \mathrm{~A}$ typ. The HSWA2-30DR+ switch is in a very small size and low profile package, $4 \times 4 \mathrm{~mm}$ and 0.9 mm respectively.

[^0]
RF Electrical Specifications, $\mathrm{DC}-3000 \mathrm{MHz}, \mathrm{T}_{\mathrm{AmB}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$

Parameter	Condition	Min.	Typ.	Max.	Units
Operating Frequency		$D C^{(\text {note 4) }}$		3000	MHz
Insertion Loss ${ }^{\text {(note 1) }}$	1 GHz 2 GHz 3 GHz		$\begin{gathered} 0.75 \\ 0.95 \\ 1.2 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.2 \\ & 1.4 \end{aligned}$	dB
Isolation between Common port and RF1/RF2 ports	1 GHz 2 GHz 3 GHz	$\begin{aligned} & 55 \\ & 46 \\ & 40 \end{aligned}$	$\begin{aligned} & 64 \\ & 50 \\ & 44 \end{aligned}$		dB
Isolation between RF1 and RF2 ports	1 GHz 2 GHz 3 GHz	$\begin{aligned} & 57 \\ & 54 \\ & 40 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \\ & 48 \end{aligned}$		dB
Return Loss @ Common port	1 GHz 2 GHz 3 GHz		$\begin{aligned} & 20 \\ & 17 \\ & 14 \end{aligned}$		dB
Return Loss @ RF1/RF2 ports	1 GHz 2 GHz 3 GHz		$\begin{aligned} & 20 \\ & 18 \\ & 17 \end{aligned}$		dB
Input IP2	$5 \mathrm{MHz}-1000 \mathrm{MHz}$		+80		dBm
Input IP3 (note 2)	$\begin{array}{r} 10 \mathrm{MHz}-1000 \mathrm{MHz} \\ 1000 \mathrm{MHz}-3000 \mathrm{MHz} \end{array}$		$\begin{aligned} & +55 \\ & +52 \end{aligned}$		dBm
Input 1dB Compression ${ }^{\text {(note 2,3) }}$	1000 MHz	+29	+31		dBm

Notes:

1. I.LOSS values are de-embedded from test board Loss.
2. Device linearity degrades below 1 MHz .
3. Note absolute maximum ratings for input power.
4. Lowest Freq. determined by value of coupling capacitors at RF ports.

DC Electrical Specifications

Parameter	Min.	Typ.	Max.	Units
Vod, Supply Voltage ${ }^{\text {(note 5) }}$	2.7	3	3.3	V
Supply Current (VDD $=3 \mathrm{~V})^{(\text {note 6) }}$	-	8	20	$\mu \mathrm{A}$
Control Voltage Low	0	-	0.3xVdD	V
Control Voltage High	0.7 xVDD	-	Vdd	V

Note 5: See application note AN-80-006 for +5 V supply voltage.
Note 6: At Control Frequency of 1 kHz . Increases to $21 \mu \mathrm{~A}$ at 10 kHz and $56 \mu \mathrm{~A}$ at 50 kHz typically.

Switching Specifications

Parameter	Min.	Typ.	Max.	Units
Switching Time, 50% CTRL to $90 / 10 \%$ RF	-	2.0	-	μ Sec
Video Feedthrough, $5 \mathrm{MHz}-1000 \mathrm{MHz}$ (note 7)	-	-	15	$\mathrm{mV}_{\text {p-p }}$

Note 7: Measured with a 1 nSec risetime,0/3V pulse and 500 MHz bandwidth.

Absolute Maximum Ratings

Parameter	Ratings
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
VDD, Supply Voltage	-0.3 V Min., 4V Max.
Voltage control	-0.3 V Min., VdD +0.3 V Max.
ESD, HBM (ANSI/ESD STM 5.1-2001)	250 V to <500V (CLASS 1A)
ESD, MM (ANSI/ESD STM 5.2-1999)	50 V (CLASS M1)
RF input power: (note 8) When the common port is connected to the RF port (RF1 or RF2) When the RF port (RF1 or RF2) is not connected to the common port When the common port is not connected to either RF1 or RF2	+33 dBm

Note 8: See Truth Table on page 3.
Permanent damage may occur if any of these limits are exceeded

Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. . The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

The RF switch control bits select the desired switch-state, as shown in Table 1: Truth Table.

Table 1: Truth Table.

STATE	Control Input		RF Input / Output	
	Control 1	Control 2	RF1 to RF COMMON	RF2 to RF COMMON
1	Low	Low	OFF	OFF
2	Low	High	OFF	ON
3	High	Low	ON	OFF
4	High	High	N/A	N/A

General notes:

1. When either of the RF1 or RF2 ports is closed (ON state), the closed port is connected to the RF Common port.
2. When either of the RF1 or RF2 ports is open (OFF state), the open port is connected to an internal 50Ω termination.
3. When both RF1 and RF2 ports are open (OFF state), the all three RF ports are connected to an internal 50Ω termination.

EXAMPLE OF STATE 3

Functional Diagram

Pin Description

Function	Pin Number	Description
GND	1	RF Ground
GND	2	RF Ground
RF1	3	RF I/O
GND	4	RF Ground
GND	5	RF Ground
GND	6	RF Ground
GND	7	RF Ground
RF COM	8	RF Common
GND	9	RF Ground
GND	10	RF Ground 1)
GND	11	RF Ground
GND	12	RF Ground
RF2	13	RF I/O
GND	14	RF Ground
GND	15	RF Ground
Control 2	16	Control 2
Control 1	17	Control 1
GND	18	Supply Voltage Ground
GND	19	Digital Ground
VDD	20	Supply Voltage
GND	Paddle	RF Ground Pad

Notes:

1. RF pins 3,8 and 13 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.
2. The exposed solder pad on the bottom of the package (See Pin Configuration) must be grounded for proper device operation

Pin Configuration (Top View)

잉

Typical Performance Curves over various states. For switch state see Truth Table 1 on page 3.

INSERTION LOSS Vs. FREQUENCY @ +25 ${ }^{\circ} \mathrm{C}$

ISOLATION BETWEEN RF1/RF2 TO RF COM Vs. FREQUENCY

ISOLATION BETWEEN RF1 TO RF2
Vs. FREQUENCY

INSERTION LOSS Vs. FREQUENCY

ISOLATION BETWEEN RF1/RF2 TO RF COM
Vs. FREQUENCY

ISOLATION BETWEEN RF1 TO RF2
Vs. FREQUENCY

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Typical Performance Curves over various states. For switch state see Truth Table 1 on page 3.

RF1 RETURN LOSS Vs. FREQUENCY

RF1 RETURN LOSS Vs. FREQUENCY

RF COM RETURN LOSS Vs. FREQUENCY @ +25²C

RF COM RETURN LOSS Vs. FREQUENCY

RF COM RETURN LOSS Vs. FREQUENCY

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. the parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms";; Purchasers of this part are entitled

Typical Performance Curves over various states. For switch state see Truth Table 1 on page 3.

RF2 RETURN LOSS Vs. FREQUENCY

INPUT IP3 Vs. FREQUENCY

POWER IN @ 1dB COMPRESSION Vs. FREQUENCY

RF2 RETURN LOSS Vs. FREQUENCY

INPUT IP3 Vs. FREQUENCY

POWER IN @ 1dB COMPRESSION Vs. FREQUENCY

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled
to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at wwwinicircuits.com/MCLStore/terms isp

Outline Drawing (DG983-1)

Device Marking

Pin 1 Index

PCB Land Pattern

Suggested Layout,
Tolerance to be within $\pm .002$

Outline Dimensions (inch)

A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	WT. GRAMS
.157	.157	.035	.008	.081	.081	.010	-	.022	.020	.177	.177	.081	.010	.032	.081	
4.00	4.00	0.90	0.20	2.06	2.06	0.25	-	0.56	0.50	4.50	4.50	2.06	0.25	0.81	2.06	.04

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Tems and the exclusive rights and remedies thereunder, please visit Mini-CCircuits' website at ww.minicircuits.com/MCLStore/terms.js

Suggested Layout for PCB Design (PL-206)

Recommended layout for PCB design

The amount of vias surrounding the device in the suggested PCB layout are critical for obtaining the specified isolation performance for the device shown in the datasheet.

[^1]
TB-347 Evaluation Board Schematic Diagram

How to use evaluation Board TB-347

The Evaluation board TB-347 was designed to evaluate the electrical performance of the HSWA2-30DR+ SPDT switch.

RF3 and RF4 SMA 50Ω connectors are connected through a 50Ω transmission line that is used to estimate the evaluation board loss for de-embedding purposes. The transmission lines were designed using a coplanar waveguide with ground plane. For details, please see suggested PCB layout on Page 8. The number of vias surrounding the switch is critical for obtaining the specified isolation.

The TB-347 operates from +2.7 V to +6.5 V applied to VDD connector. IC1 voltage regulator limits the supply voltage to the switch to +3.3 V . IC2 is a Schmitt trigger \& buffer which prevents an overload of switch control inputs from high level control signals (up to +5.5 V) and prevents from noise and transient spikes during switching process.

The control connector is used for computer control mode or manual operation mode. In manual control mode connect Control 1 and/or Control 2 to ground to set Control 1 and/or Control 2 to logic low, respectively. When jumpers are removed, the digital control input pulled up to VDD for logic high.
For computer control mode the software \& cable are supplied. The cable should be connected between computer LPT port and evaluation board control connector.

Tape and Reel Packaging Information
Table T\&R

$\begin{aligned} & \text { TR } \\ & \text { No. } \end{aligned}$	No. of Devices	Reel Size	Tape Width	Pitch	Unit Orientation
F87	Small quantity standards $20,50,100,200$	7 inch	12 mm	8 mm	
	$\begin{gathered} 3000 \\ \text { (Standard) } \end{gathered}$	13 inch			

[^0]: Notes
 A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document,
 B. Flectrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instru
 B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

[^1]: Notes
 A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
 A. Performance and quaity attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
 B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
 B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
 C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively. "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at ww.minicircuits.com/MCLStore/terms.js

