THE BIG DEAL

- Wideband, DC to 30 GHz
- Low Insertion Loss, Typ. 1.0 dB
- High Isolation, Typ. 65 dB
- High Input IP3, Typ. +48 dBm
- Fast Rise/Fall Time, Typ. 6.9 ns/7.1 ns

Generic photo used for illustration purposes only

- $3 \times 3 \mathrm{~mm}, 16$-Lead QFN-Style Package

APPLICATIONS

- Radar, EW and ECM Defense Systems
- Communication Infrastructure
- Test and Measurement
$3 x 3 \mathrm{~mm}, 16$-Lead QFN-Style Package

FUNCTIONAL DIAGRAM

PRODUCT OVERVIEW

Mini-Circuits' M3SWA2-34DR+ is a GaAs MMIC SPDT absorptive switch with an internal driver designed for wideband operation from DC to 30 GHz . This switch enables fast, nano-second switching across a wide frequency range with no gate lag effects. This model provides excellent isolation, high linearity and is capable of withstanding +27 dBm RF input power. It is packaged in a small $3 \times 3 \mathrm{~mm}$ QFN-Style package for ease of integration in compact assemblies.

KEY FEATURES

Features	Advantages
Absorptive Design	Absorptive switch design enables excellent return loss on all ports, minimizing reflection at the unselected port.
High Isolation: - 61 dB Typ. RFC to RF1/RF2 - 65 dB Typ. RF1 to RF2	High isolation significantly reduces leakage of power into OFF ports.
High Linearity and Input Power: - Input Power at P1dB, +25.2 dBm Typ. - Input IP3, +48 dBm Typ. - Max RF Input Power, +27 dBm CW	High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multicarrier environments, or in the presence of strong interfering signal from adjacent circuitry. High RF input power tolerance protects the device from damage due to unexpected spikes in signal level.
Fast RF Switching Time: - Rise/Fall Time, Typ. $6.9 \mathrm{~ns} / 7.1 \mathrm{~ns}$ - On/Off Time, Typ. $23.3 \mathrm{~ns} / 16.5 \mathrm{~ns}$ - Settling to 0.05 dB , Typ. 29 ns	Fast switching makes this model suitable for applications where extremely fast transition between ports is required, such as automated switching networks.
Compact Size, $3 \times 3 \mathrm{~mm}$	Small footprint saves space in dense layouts, while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB. Industry standard packaging allows for ease of assembly in high volume manufacturing processes.

ELECTRICAL SPECIFICATIONS ${ }^{1,2,3} \mathrm{AT}+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$, UNLESS NOTED OTHERWISE

Parameter	Condition (GHz)	Min.	Typ.	Max.	Units
Frequency Range		DC		30	GHz
Insertion Loss	$\begin{gathered} \hline 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$		$\begin{aligned} & \hline 0.6 \\ & 0.6 \\ & 0.6 \\ & 1.0 \\ & 1.3 \\ & 2.2 \end{aligned}$		dB
Isolation Between Ports, RF1 \& RF2	$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$	$\begin{aligned} & 68 \\ & 74 \\ & 63 \\ & 59 \\ & 49 \\ & 44 \end{aligned}$	$\begin{aligned} & 79 \\ & 78 \\ & 67 \\ & 65 \\ & 53 \\ & 48 \end{aligned}$		dB
Isolation Between RFC \& RF1/RF2 Ports	$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$	$\begin{aligned} & 71 \\ & 73 \\ & 61 \\ & 46 \\ & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & 83 \\ & 77 \\ & 65 \\ & 50 \\ & 48 \\ & 45 \end{aligned}$		dB
Return Loss - RFC	$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \\ & 17 \\ & 13 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 24 \\ & 21 \\ & 17 \\ & 17 \\ & 20 \end{aligned}$		dB
Return Loss - RF1 \& RF2 (On \& Off State)	$\begin{gathered} \hline 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$	$\begin{gathered} 15 \\ 16 \\ 17 \\ 14 \\ 11 \\ 7 \end{gathered}$	$\begin{aligned} & 19 \\ & 22 \\ & 22 \\ & 21 \\ & 17 \\ & 14 \end{aligned}$		dB
Input IP3 ($\mathrm{P}_{\mathrm{IN}}=+5 \mathrm{dBm} /$ Tone $)$	$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$		$\begin{aligned} & +46 \\ & +50 \\ & +52 \\ & +51 \\ & +46 \\ & +42 \end{aligned}$		dBm
Input Power at P1dB	$\begin{gathered} \hline 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$		$\begin{aligned} & +19.8 \\ & +24.5 \\ & +26.1 \\ & +27.4 \\ & +27.8 \\ & +25.7 \end{aligned}$		dBm
Input Power at P0.1dB	$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ 10 \\ 20 \\ 30 \end{gathered}$		$\begin{aligned} & +17.7 \\ & +21.6 \\ & +23.4 \\ & +26.3 \\ & +26.9 \\ & +24.4 \end{aligned}$		dBm

1. Tested on Mini-Circuits Characterization Test Board TB-M3SWA234DRC+. See Figure 2.
2. Bi-directional, refer to S-Parameters for actual performance.
3. All RF-ports must be DC blocked or held at 0 V DC.

DC ELECTRICAL SPECIFICATIONS

Parameter	Min.	Typ.	Max.	Units
Positive Supply Voltage, $\mathrm{V}_{\text {D }}$	+3.3		+3.6	V
Negative Supply Voltage, $\mathrm{V}_{\text {EE }}$	-3.6		-3.3	V
Positive Supply Current, $\mathrm{I}_{\text {DD }}$		2.7	2.9	mA
Negative Supply Current, $\mathrm{IEE}^{\text {E }}$		1.6	1.8	mA
Control Voltage Low		0	+0.8	V
Control Voltage High	+1.8	+2	+3.6	V
Control Current Low		0.01	1	$\mu \mathrm{A}$
Control Current High		5	9	$\mu \mathrm{A}$

SWITCHING SPECIFICATIONS

Parameter	Condition	Min.	Typ.	Max.	Units
ON Time, 50\% Control to 90\% RF output	RF $P_{\text {IN }}$ at $R F C=0 \mathrm{dBm}$ RF Frequency $=150 \mathrm{MHz}$ Control Frequency $=1 \mathrm{kHz}$ Control High $=+2 \mathrm{~V}$ Control Low $=0 \mathrm{~V}$		23		ns
OFF Time, 50\% Control to 10\% RF output			16		ns
Video Leakage			+5.4		mV
Rise Time, 10\% to 90\% of RF output			6.9		ns
Fall Time, 90% to 10% of RF output			7.1		ns
Settling time (50% VCTRL to 0.05 dB of final RF output)			29		ns

TRUTH TABLE

State of Control Voltage	RFC to RF1	RFC to RF2
Low	ON	OFF
High	OFF	ON

TYPICAL PERFORMANCE GRAPHS

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)
5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)
6. $V_{E E}$ is the negative equivalent value to $V_{D D}$

MMIC SURFACE MOUNT

SPDT RF Switch

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)
5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)
6. $V_{E E}$ is the negative equivalent value to $V_{D D}$

MMIC SURFACE MOUNT

TYPICAL PERFORMANCE GRAPHS

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)
5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)
6. $V_{E E}$ is the negative equivalent value to $V_{D D}$

MMIC SURFACE MOUNT

TYPICAL PERFORMANCE GRAPHS

[^0]TYPICAL PERFORMANCE GRAPHS

INPUT IP3 vs. TEMPERATURE,
$P_{\mathrm{IN}}=+5 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$

INPUT IP3 vs. $V{ }^{6}$,
$\mathrm{P}_{\text {IN }}=+5 \mathrm{dBm}$, TEMPERATURE $=+25^{\circ} \mathrm{C}$

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)
5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)
6. $V_{E E}$ is the negative equivalent value to $V_{D D}$

ABSOLUTE MAXIMUM RATINGS ${ }^{7}$

Parameter	Ratings
Operating Temperature (ground lead)	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ${ }^{8}$	$+150^{\circ} \mathrm{C}$
Total Power Dissipation	0.43 W
Input Power at RFC $(\mathrm{CW}),\left(\mathrm{V}_{\mathrm{DD}}=+3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.5 \mathrm{~V}\right)$	+29 dBm
Input Power at RF1/RF2 $(\mathrm{CW}),\left(\mathrm{V}_{\mathrm{DD}}=+3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.5 \mathrm{~V}\right)$	+27 dBm
DC Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	0 V to +5 V
DC Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	-5 V to 0 V

7. Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.
8. Peak temperature on top of Die

THERMAL RESISTANCE

Parameter	Ratings
Thermal Resistance $\left(\Theta_{\mathrm{jc}}\right)^{9}$	$363^{\circ} \mathrm{C} / \mathrm{W}$

9. $\Theta_{\mathrm{jc}}=($ Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING

	Class	Voltage Range	Reference Standard
HBM	1 A	250 V to $<500 \mathrm{~V}$	ANSI/ESDA/JEDEC JS-001-2017
CDM	C 3	$\geq 1000 \mathrm{~V}$	JESD22-C101F

ESD HANDLING PRECAUTION: This device is designed to be Class 1A for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

$50 \Omega \quad$ DC to $30 \mathrm{GHz} \quad$ Absorptive RF Switch with Internal Driver

FUNCTIONAL DIAGRAM

PAD DESCRIPTION

Function	Pad Number	Application Description (Refer to Fig 2)
RFC	15	RFC Pad connects to RF Input port.
RF OUT 1	3	RF OUT 1 Pad connects to RF Output port 1.
RF OUT 2	10	RF OUT 2 Pad connects to RF Output port 2.
$\mathrm{V}_{\text {DD }}$	8	$\mathrm{~V}_{\text {DD }}$ Pad connects to positive DC Input.
$\mathrm{V}_{\text {EE }}$	5	V $_{\text {EE }}$ Pad connects to negative DC Input.
$\mathrm{V}_{\text {CTRL }}$	6	V $_{\text {CTRL }}$ Pad connects to switch control voltage input.
GND	$2,4,7,9$, $11,14,16$	Connects to ground.
NC	$1,12,13$	Not used internally. Connected to ground on test board.

Figure 1. M3SWA2-34DR+ Functional Diagram

CHARACTERIZATION TEST BOARD

Electrical Parameters and Conditions

Insertion Loss, Isolation, Return Loss, Input Power at 1 dB Compression (P1dB), and Input IP3 tested using PNA-X N5247B microwave network analyzer and P5022A vector network analyzer.

Conditions:

1. Insertion Loss, Isolation, and Return Loss: $\mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$
2. Input IP3 (IIP3): Two tones, spaced 1 MHz apart, $+5 \mathrm{dBm} /$ Tone at input.

Figure 2. M3SWA2-34DR+ Characterization and Application Circuit

Component	Value	Size	Part Number	Manufacturer
C2, C3	100 pF	0402	GRM1555C1H101JAO1D	Murata
C1, C4	0.1 uF	0402	GRM155R71C104KA88D	Murata
R1, R2	11.5Ω	0402	RP73PF1E11R5BTDF	TE Connectivity
R3	100Ω	0402	RK73H1ETTP1000F	KOA
D1, D2	$\mathrm{V}_{\mathrm{Z}}=+5.6 \mathrm{~V}$	SOD-123	SZMMSZ5232BT1G	ON Semiconductor

CASE STYLE DRAWING

Weight: . 02 grams
Dimensions are in mm [Inches]. Tolerances: 3PI. $\pm .05$ [.002]

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD
CLICK HERE

Performance Data \& Graphs	Data
	Graphs S-Parameter (S3P Files) Data Set (.zip file)
Case Style	DQ3005. Plastic package, exposed paddle, Lead Finish: Matte-Tin
RoHS Status	Compliant
Tape \& Reel Standard quantities available on reel	F104 $7 \prime \prime$ reels with 20, 50, 100, 200, 500, 1000, or 2000 devices
Suggested Layout for PCB Design	PL-768
Evaluation Board	TB-M3SWA234DRC+
Environmental Ratings	Gerber File

NOTES

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

[^0]: 4. RF OUT is defined as either RF1 (ON) or RF2 (ON)
 5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)
 6. $V_{E E}$ is the negative equivalent value to $V_{D D}$
