

Monolithic Amplifier

MAR-3+

50Ω DC to 2 GHz

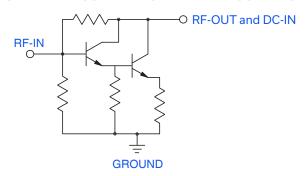
FEATURES

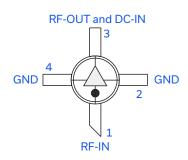
- · Wideband, DC to 2 GHz
- High Gain, 12.5 dB Typ. at 0.1 GHz
- Internally Matched to 50Ω
- Low Noise Figure, 3.7 dB Typ.
- Exact Footprint Substitute for MSA-0385
- · Cascadable, Unconditionally Stable
- Aqueous Washable
- Protected by US Patent 6,943,629

Generic photo used for illustration purposes only

CASE STYLE: VV105

+RoHS Compliant The +Suffix identifies RoHS Compliance.


APPLICATIONS


- Cellular
- PCN Instrumentation

PRODUCT OVERVIEW

MAR-3+ (RoHS compliant) is a wideband amplifier offering high dynamic range. It has repeatable performance from lot to lot. It is enclosed in a Micro-X package. MAR-3+ uses Darlington configuration and is fabricated using InGaP HBT technology. Expected MTTF is 3,000 years at +85°C case temperature.

SIMPLIFIED SCHEMATIC AND PIN DESCRIPTION

Function	Pin Number	Description	
RF-IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".	
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.	

REV. D ECO-024824 MAR-3+ MCL NY 250311

Monolithic Amplifier

MAR-3+

50Ω DC to 2 GHz

ELECTRICAL SPECIFICATIONS AT +25°C AND 35 mA UNLESS NOTED OTHERWISE

Parameter	Conditions (GHz)	Min.	Typ. ¹	Max.	Units
Frequency Range ²		DC		2	GHz
	0.1		12.5		
Gain	1		12.0		dB
	2	8.0 ³	10.5		
Input Return Loss	DC - 2		17.5		dB
Output Return Loss	DC - 2		17.5		dB
Output Power @ 1 dB Compression	1		+10.0		dBm
Output IP3	1		+23		dBm
Noise Figure	1		3.7		dB
Recommended Device Operating Current			35		mA
Device Operating Voltage			+5.0		V
Device Voltage Variation vs. Temperature at 35 mA			-2.6		mV/°C
Device Voltage Variation vs. Current at +25°C			15.5		mV/mA
Thermal Resistance, Junction-to-Case ⁴			174		°C/W

1. Based on test data of Model MAR-3SM+ (Case Style WW107).

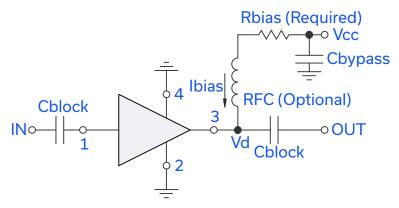
2. Guaranteed specification DC-2 GHz. Low frequency cut off determined by external coupling capacitors.

3. Full temperature range.4. Case is defined as ground leads.

ABSOLUTE MAXIMUM RATINGS

ADSOLOTE MAXIMOM KATINGS			
Parameter	Ratings		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-55°C to +100°C		
Operating Current	70 mA		
Power Dissipation	400 mW		
Input Power	+13 dBm		

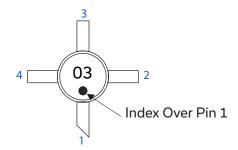
Permanent damage may occur if any of these limits are exceeded. These ratings are not intended for continuous normal operation.



Monolithic Amplifier

MAR-3+

50Ω DC to 2 GHz


RECOMMENDED APPLICATION CIRCUIT

Test Board includes case, connectors, and components (in bold) soldered to PCB

R BIAS			
Vcc	"1%" Res. Values (Ohms) for Optimum Biasing		
7	57.6		
8	86.6		
9	115		
10	143		
11	169		
12	200		
13	226		
14	255		
15	287		

PRODUCT MARKING

 $Markings\ in\ addition\ to\ model\ number\ designation\ may\ appear\ for\ internal\ quality\ control\ purposes.$

Monolithic Amplifier

MAR-3+

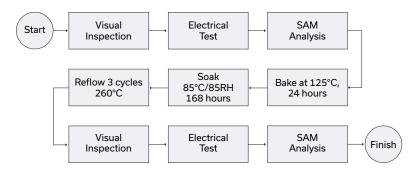
50Ω DC to 2 GHz

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD.

	HER

	Data Table		
Performance Data & Graphs	Swept Graphs		
	S-Parameter Data Set (.zip file)		
Case Style	VV105 Plastic micro-x package, 0.085 body diameter, Lead Finish: Matte-Tin		
Tape & Reel	F4		
Suggested Layout for PCB Design	PL-262		
Evaluation Board	TB-432-3+		
Environmental Ratings	ENV08T3		

ESD RATING


Human Body Model (HBM): Class 1B (500 V to < 1000 V) in accordance with ANSI/ESD STM 5.1 - 2001 Machine Model (MM): Class M1 (< 100 V) in accordance with ANSI/ESD STM 5.2 - 1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

