

Monolithic Amplifier

MNA-2W+

50Ω 0.5 to 4.5 GHz

THE BIG DEAL

- Integrated Matching, DC Blocks and Bias Circuits
- Excellent Active Directivity, 21 dB Typ. at 2.5 GHz and +5 V
- Choice of Supply Voltage, +2.8 V to +5 V
- 3x3 mm 8-Lead QFN-Style Package
- Output Power, +17.5 dBm Typ. at 2.5 GHz and +5 V
- · Aqueous Washable

Generic photo used for illustration purposes only

CASE STYLE: DQ849

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our website for methodologies and qualifications

APPLICATIONS

- Buffer Amplifier
- Cellular Infrastructure
- · Communications Satellite
- Defense

PRODUCT OVERVIEW

MNA-2W+ is a wideband pHEMT based MMIC amplifier with high active Directivity. MNA-2W+ integrates the entire matching network and majority of the bias circuit inside the package, reducing the need for complicated external circuits. This approach makes the MNA-2W+ amplifier extremely straightforward to use. This design operates on a single +2.8 to +5 V supply, is well matched for 50Ω and comes in a tiny, low profile 3x3 mm 8-lead QFN-Style package accommodating dense circuit board layouts. MNA-2W+ belongs to MNA series of models available in Die and packaged form.

KEY FEATURES

Feature	Advantages		
Excellent Active Directivity (Isolation - Gain) 21-36 dB	Ideal for use as a buffer amplifier minimizing interaction of adjacent circuits		
Integrates DC Blocks and RF Choke	Minimizes external components, component count and circuit area.		
Single +2.8 to +5 V Operation	Amplifier can be used at low voltage such as +3 V or standard +5 V. +5 V operation results in higher P1dB and OIP3.		
3x3 mm 8-Lead QFN-Style Package	Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.		

REV. C ECO-024931 MNA-2W+ MCL NY 250319

Monolithic Amplifier

MNA-2W+

50Ω 0.5 to 4.5 GHz

ELECTRICAL SPECIFICATIONS¹ AT +25°C

Parameter	Condition (GHz)	Min.	V _s =+5 V Typ.	Max.	V _s =+2.8 V Typ.	Units
Frequency Range	, ,	0.5		4.5	0.5-4.5	GHz
. , ,	0.5		14.1		12.4	
	1.0		15.0		13.0	
0.2.1.2	2.0	13.5	15.0	16.5	12.6	ı.p
Gain	2.5		14.7		12.3	dB
	3.5		12.8		10.6	
	4.5	9.0	9.7	11.5	7.8	
	0.5		8		8	
	1.0		16		17	
	2.0		19		22	
Input Return Loss	2.5		17		19	dB
	3.5		14		14	
	4.5		9		9	
	0.5		14		13	
	1.0		21		18	
	2.0		15		18	
Output Return Loss	2.5		14		17	dB
	3.5		15		19	
	4.5		17		17	
	0.5		+19.2		+10.3	
	1.0		+19.1		+11.4	
	2.0		+17.9		+11.8	dBm
Output Power at P1dB	2.5		+17.5		+11.8	
	3.5		+15.8		+11.7	
	4.5		+13.9		+11.7	
	0.5		+32		+22	
	1.0		+31		+23	
	2.0		+29		+23	
Output IP3			+29		+23	dBm
	2.5 3.5		+29		+23	
			+27		+23	
	4.5		5.6		5.8	
	0.5 1.0		5.6		5.8	
Noise Figure (dB)	2.0		5.3 5.4		5.5	dB
	2.5				5.6	
	3.5		5.6		5.7	
	4.5		6.3		6.5	
	0.5		33		36	
A 11 B1 11 11	1.0		29		28	
Active Directivity	2.0		22		22	dB
(Isolation - Gain)	2.5		21		21	
	3.5		21		21	
200	4.5		24		23	
DC Current			84	104	79	mA
Device Current Variation vs. Temperature ²			32		15	μA/°C
Device Current Variation vs. Voltage			0.0013		0.0034	mA/mV
Thermal Resistance at +85°C (Junction to Lead)			54		54	°C/W

^{1.} Measured on Mini-Circuits Characterization test board TB-186-2W+. See Characterization Test Circuit (Fig. 1)

^{2. (}Current at +85°C - Current at -45°C)/130 3. (Current at +5.25 V - Current at +3.9 V)/1.35 4. (Current at +3.9 V - Current at +2.66 V)/1.24

Monolithic Amplifier

MNA-2W+

50Ω 0.5 to 4.5 GHz

ABSOLUTE MAXIMUM RATINGS⁵

Parameter	Ratings	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-55°C to +100°C	
DC Voltage	+7 V at pin 7 (on TB-186-2W+) +1 V at pins 2 & 5	
Power Dissipation	800 mW	
Input Power	$+11$ dBm at V_S = $+2.8$ V and $+16$ dBm at $+5$ V (continuous operation) $+23$ dBm (5 minutes max)	

^{5.} Permanent damage may occur if any of these limits are exceeded.

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description (See Fig 1)	
RF-IN	2	RF input pin	
RF-OUT	5	RF output pin	
DC	7,8	DC Bias pads 7,8. Pad 7 connected to ground via 1000 pF. Pad 8 connected to pad 7 via 33.2Ω.	
NC	1,3,4,6	Not Connected, connect pad 3 and 4 to ground externally	
GND	Paddle	Ground	
OPTIONAL	1,6	No internal connection; recommended use: per PCB Layout PL-078	

These ratings are not intended for continuous normal operation.

Monolithic Amplifier

MNA-2W+

 50Ω 0.5 to 4.5 GHz

CHARACTERIZATION & APPLICATION TEST CIRCUIT

Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-186-2W+) Gain, Return Loss, Output Power at 1 dB Compression (P1 dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain and Return loss: P_{IN}= -25 dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

Component	Size	Value	Units
R1	0805	33.2	Ω
C1	0402	1000	ρF

RECOMMENDED APPLICATION CIRCUIT

Fig 2. Test Board includes case, connectors, and components soldered to PCB

Component	Size	Value	Units
R1	0805	33.2	Ω
C1	0402	1000	ρF

PRODUCT MARKING

Marking may contain other features or characters for internal lot control.

Monolithic Amplifier

MNA-2W+

 50Ω 0.5 to 4.5 GHz

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. TO ACCESS

CLICK HERE

Performance Data	Data Table Swept Graphs S-Parameter (S2P Files) Data Set (.zip file)
Case Style	DQ849 3x3x0.9 mm QFN-Style Plastic package, exposed paddle Lead finish: Matte-Tin
Tape & Reel Standard Quantities Available on Reel	F104 7" Reels with 10, 20, 50, 100, 200, 500, 1000 or 2000 devices
Suggested Layout for PCB Design	PL-078
Evaluation Board	TB-186-2W+
Environmental Ratings	ENV08T1

ESD RATING

Human Body Model (HBM): Class 1A (250 to <500 V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

