

Monolithic Amplifier

VNA-28B+

 50Ω 0.5 to 2.5 GHz High Directivity

FEATURES

- +2.8 V & +5 V Operation
- · High Directivity, 16-23 dB
- Footprint compatible with VNA-28 & VNA-28A+
- Low Noise Figure, 3.0 dB typ.
- Output Power, up to +11.4 dBm typ. at 1.5 GHz

Generic photo used for illustration purposes only

CASE STYLE: DL1020

+RoHS CompliantThe +Suffix identifies RoHS Compliance.
See our website for methodologies and qualifications

APPLICATIONS

- Buffer Amplifier
- Cellular
- PCN

PRODUCT OVERVIEW

Mini-Circuits' VNA-28B+ is a wideband amplifier offering high dynamic range. It is enclosed in an 8-lead 5X6 mm MCLP package, footprint compatible with SOIC-8 lead package. VNA-28B+ is fabricated using PHEMT technology. It has built-in DC blocks at RF-IN and RF-OUT ports and separate pad for DC eliminating the need for bias tee.

SIMPLIFIED SCHEMATIC AND PIN DESCRIPTION

PAD DESCRIPTION

TAB BESORIE FIOR					
Function	Pad Number	Description			
RF-IN	3	RF input pin.			
RF-OUT	6	RF output pin.			
DC	1	Bias pin			
GND	2,4,5,7,8 and paddle	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.			

REV. A VNA-28B+ ECO-025227 VNA-28B+ 250415

Monolithic Amplifier

VNA-28B+

50Ω 0.5 to 2.5 GHz High Directivity

ELECTRICAL SPECIFICATIONS¹ AT +25°C, 50Ω UNLESS NOTED OTHERWISE

Parameter	Condition	Vs=+5 V			Vd=+2.8 V	Unita
Parameter	(GHz)	Min. Typ.		Max.	Тур.	Units
requency range		0.5		2.5	0.5-2.5	GHz
	0.5		21.2		20.2	
	0.75		23.2		21.9	dB
5.1.	1.0		23.5		22.0	
Gain	1.5		23.0		21.1	
	2.0	19.5	21.7	24.0	19.7	
	2.5		19.9		17.9	
	0.5		5.0		5.2	dB
	0.75		10.0		10.7	
	1.0		14.9		16.1	
nput Return Loss	1.5		17.3		19.4	
	2.0		16.1		17.0	
	2.5		13.9		14.0	
	0.5		12.0		12.5	
	0.75		13.9		21.0	dB
	1.0		11.7		17.9	
Dutput Return Loss	1.5		10.6		16.3	
	2.0		11.2		17.3	
	2.5		13.3		20.8	
	0.5		+13.3		+11.4	dBm
	0.75		+12.9		+11.4	
	1.0		+11.9		+10.8	
Output Power @1dB Compression	1.5		+11.4		+10.2	
	2.0		+10.9		+9.7	
	2.5		+10.5		+9.1	
	0.5		+24.3		+22.2	dBm
	0.75		+24.6		+22.3	
	1.0		+23.4		+21.5	
Output IP3	1.5		+22.7		+20.8	
	2.0		+21.8		+20.1	
	2.5		+21.2		+19.3	
	0.5		3.2		3.3	
	0.75		3.0		3.1	dB
	1.0		3.0		3.0	
Noise Figure	1.5		2.9		3.1	
	2.0		3.0		3.1	
	2.5		3.1		3.3	
	0.5		17.1		19.5	
	0.75		20.0		23.0	
	1.0		23.3		22.9	dB
Directivity (Isolation-Gain)	1.5		20.7		18.9	
	2.0		18.7		17.4	
	2.5		17.5		16.5	
OC Current	2.0		34	45	32	mA
Device Current Variation vs Temperature ²			16		7	μA°/C
Device Current Variation vs Voltage			0.00043		0.00134	mA/mV
hermal Resistance at +85°C			64		64	°C/W

^{1.} Measured on Mini-Circuits Characterization test board TB-01-28B+. See Characterization Test Circuit (Fig. 1)

^{2.} Current at +85°C - Current at -45°C)/130 3. Current at +5.25 V - Current at +3.29 V)/1.35

^{4.} Current at +3.9 V - Current at +2.66 V)/1.24

Monolithic Amplifier VNA-28B+

50Ω 0.5 to 2.5 GHz High Directivity

ABSOLUTE MAXIMUM RATINGS⁵

Parameter	Ratings			
Operating Temperature	-40°C to +85°C			
Storage Temperature	-55°C to +100°C			
DC Voltage	+7 V at pad 1 +1 V at pads 3 & 6; +10 V at pads 3,6			
Power Dissipation	700 mW			
Input Power	+5 dBm (continuous operation) +28 dBm (5 minutes max.)			

^{5.} Permanent damage may occur if any of these limits are exceeded. These ratings are not intended for continuous normal operation.

CHARACTERIZATION TEST CIRCUIT

Fig 1. Characterization Test Circuit

Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-01-28B+) Gain, Return Loss, Output Power at 1dB Compression (P1 dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain: P_{IN}= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -5 dBm/tone at input.

RECOMMENDED APPLICATION CIRCUIT

Fig 2. Recommended Application Circuit

PRODUCT MARKING

Monolithic Amplifier

VNA-28B+

 50Ω 0.5 to 2.5 GHz High Directivity

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. CLICK HERE

	Data Table		
Performance Data & Graphs	Swept Graphs		
	S-Parameter (S2P Files) Data Set (.zip file)		
Case Style	DL1020 Plastic model, 8 lead, 5x6 mm MCLP, tin-silver over nickel		
Tape & Reel Standard quantities available on reel	F68 7" reels with 20, 50, 100, 200, 500 or 1K devices 13" reels with 2K, 3K, 4K devices		
Suggested Layout for PCB Design	PL-077		
Evaluation Board	TB-01-28B+		
Environmental Ratings	ENV08T1		

ESD RATING

Human Body Model (HBM): Class 1A (250 V to <500 V) in accordance with ANSI/ESD STM 5.1 - 2001 Machine Model (MM): Class M1 (Pass 25 V) in accordance with ANSI/ESD STM5.2-1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

