

SPDT RF Switch

VSWA2-63DR+

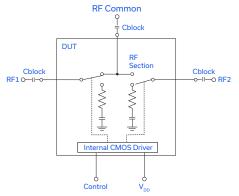
 50Ω 500 to 6000 MHz Absorptive RF Switch with Internal Driver Single Supply Voltage, +3 V to +5 V

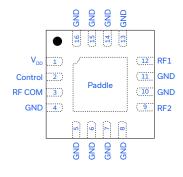
FEATURES

- · High Isolation, 65 dB Typ. at 1 GHz
- Low Insertion Loss, 1.0 dB Typ. at 1 GHz
- High IP3, +50 dBm Typ. at 1 GHz
- Fast Switching, Rise/Fall Time, 23 ns Typ.
- Low Current Consumption, 12 µA Typ.

Generic photo used for illustration purposes only CASE STYLE: DG1235-1

+RoHS Compliant
The +Suffix identifies RoHS Compliance.
See our website for methodologies and qualifications


APPLICATIONS


- Automated Switching Networks
- Cellular/ PCS
- ISM, WCDMA, WiMAX, LTE

PRODUCT OVERVIEW

The VSWA2-63DR+ is a high isolation absorptive SPDT switch with integral CMOS driver, operates with single positive supply voltage while consuming, $12 \mu A$ typical. It has been designed for very wideband operation of 500 to 6000 MHz for $500 \mu B$ systems and yet is usable in $750 \mu B$ systems with degraded return loss. This switch is usable over an extended frequencies from 300 kHz to 500 MHz with reflective switch performance. It is packaged in a tiny $4x4x0.9 \mu B$ mm package and is rated MSL1 and class 1A ESD.

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description
RF COM	3	RF Common/SUM Port, Requires DC block (see Fig. 2)
RF1	12	RF Out #1/In Port #1, Requires DC block (see Fig. 2)
RF2	9	RF Out #2/In Port #2, Requires DC block (see Fig. 2)
Control	2	CMOS Control IN
V _{DD}	1	Supply Voltage
GND	4,5,6,7,8,10,11 13,14,15,16 & Paddle	RF Ground

REV. G ECO-026600 VSWA2-63DR+ MCL NY 250818

SPDT RF Switch

VSWA2-63DR+

 50Ω 500 to 6000 MHz Absorptive RF Switch with Internal Driver Single Supply Voltage, +3 V to +5 V

RF ELECTRICAL SPECIFICATIONS 1 , $T_{AMB} = +25$ $^{\circ}$ C, $V_{DD} = +3$ V TO +5 V

Parameter	Condition (MHz)	Min.	Тур.	Max.	Units
Frequency Range		500		6000	MHz
	0.3-500		0.7		
	500-2000		0.7	1.3	
Insertion Loss ²	2000-3000		0.8	1.5	dB
	3000-4000		0.9	1.5	
	4000-6000		1.0	1.9	
	0.3-500		73		
	500-2000	56	66		
Isolation Between Common Port and RF1/RF2 Ports	2000-3000	50	64		dB
	3000-4000	45	58		
	4000-6000	38	54		
	0.3-500		74		
	500-1000	50	60		
ladata Balanca BE4 and BE2 Bada	1000-2000	45	56		I.D.
solation Between RF1 and RF2 Ports	2000-3000	40	52		dB
	3000-4000	38	50		
	4000-6000	34	46		
	0.3-500		24		
	500-2000		23		
Return Loss (ON STATE)	2000-3000		23		dB
(ONSTATE)	3000-4000		22		
	4000-6000		20		
	500-2000		23		
Return Loss @ RF1/RF2 Ports	2000-3000		33		J.D.
(OFF STATE)	3000-4000		23		dB
	4000-6000		24		
	500-2000		+46		
V _{DD} = +3 V	2000-6000		+40		alD
Input IP3	500-2000		+50		dBm
$V_{DD} = +5 \text{ V}$	2000-6000		+44		
1 10 17	500-2000		+24		
1 dB, V _{DD} = +3 V	2000-6000		+22		dBm
Input Compression ³	500-2000		+30		
$0.2 dB, V_{DD} = 4$	2000-6000		+27		

^{1.} Tested on Mini-Circuit's test board TB-486+, using Agilent's N5230A network analyzer (see Characterization Test Circuit, Fig. 1).

DC ELECTRICAL SPECIFICATIONS

Parameter	Min.	Тур.	Max.	Units
V _{DD} , Supply Voltage	+3		+5	V
Supply Current (V _{DD} = +5 V) ⁴		50		μА
Control Voltage Low	0		+0.5	V
Control Voltage High ⁵	+2.76		V_{DD}	V
Control Current		5		μА

^{4.} Supply current increases with switching repetition rate. See graph.

 $^{2. \} Insertion \ loss \ values \ are \ de-embedded \ from \ test \ board \ loss.$

^{3.} Do not exceed RF input power as shown in Absolute Maximum Rating table.

^{5.} CMOS interface. Latch up condition may occur when logic high signal is applied prior to power supply.

^{6. +3.5} V for V_{DD} = +4 V to +5 V

SPDT RF Switch vswa2-63DR+

50Ω 500 to 6000 MHz Absorptive RF Switch with Internal Driver Single Supply Voltage, +3 V to +5 V

SWITCHING SPECIFICATIONS

Parameter	Min.	Тур.	Max.	Units
Rise/Fall Time (10 to 90% or 90 to 10% RF)		23		ns
Switching Time, 50% CTRL to 90/10% RF		35		ns
Video Feed-Through, (Control 0 to +3 V, Freq. = 500 KHz, V_{DD} = +5 V)		25		$mV_{P,P}$

ABSOLUTE MAXIMUM RATINGS⁷

Parameter	Ratings	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65°C to +150°C	
V _{DD} , Supply Voltage	+2.7 V to +5.5 V	
Voltage Control	-0.2 V min., V _{DD} max.	
RF Input Power	1 W	
Dissipated Power at +25°C	350 mW	

^{7.} Operation of this device above any of these conditions may cause permanent damage.

TRUTH TABLE

(State of control voltage selects the desired switch state)

Chata of Control Voltage	RF Common to		
State of Control Voltage	RF1	RF2	
LOW	ON	OFF	
HIGH	OFF	ON	

ON - Low Instertion Loss State

OFF - Isolation State

SPDT RF Switch

VSWA2-63DR+

 50Ω $\,$ 500 to 6000 MHz $\,$ Absorptive RF Switch with Internal Driver Single Supply Voltage, +3 V to +5 V

CHARACTERIZATION TEST CIRCUIT

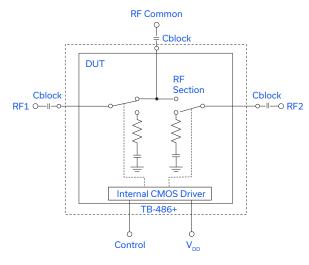


Figure 1. Block Diagram of Test Circuit Used for Characterization (DUT Soldered on Mini-Circuits' TB-486+)

Test Equipment:

For Insertion Loss, Isolation, Return Loss and DC Current:

Agilent's N5230A Network Analyzer, E3631A power supply. Cblock: Internal to network Analyzer.

For Switching Time and DC Current:

Agilent's 54832B oscilloscope, 81110A pulse generator and E3631 A power supply. Cblock: Mini-Circuits BLK-18-S+

For Input IP3:

Mini-Circuits DC blocks: BLK-18-S+ on all ports, Agilent's E8257D signal generators, 437B power meter,

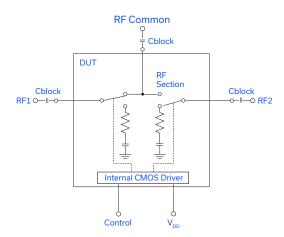
N9020A Signal analyzer and E3631 A power supply.

For Compression:

Mini-Circuits DC blocks: BLK-18-S+ on all ports. ZVE-8G and ZHL-42W amplifier as driver amplifier at RF Common.

Agilent's N5230A Network Analyzer, E3631A power supply

Conditions:


 V_{DD} = +3 V and +5 V, Control = 0 V and +3 V

For Insertion Loss, Isolation and Return Loss: $P_{IN} = 0$ dBm

For Input IP3: $P_{IN} = -5 \text{ dBm/tone}$

For Switching Time: RF Frequency: $500 \, \text{MHz}$ at $0 \, \text{dBm}$, Control Frequency: $500 \, \text{KHz}$ and $0 \, \text{V}$ and $+3 \, \text{V}$

RECOMMENDED APPLICATION CIRCUIT



Frequency (MHz)	Cblock (Suggested Value)
0.3-500	0.1 μF
500-6000	47 pF

Cblock should be free of resonance over frequency of operation.

Figure 2. Evaluation board includes case, connectors, and components soldered to PCB.

PRODUCT MARKING

Marking may contain other features or characters for internal lot control.

SPDT RF Switch

VSWA2-63DR+

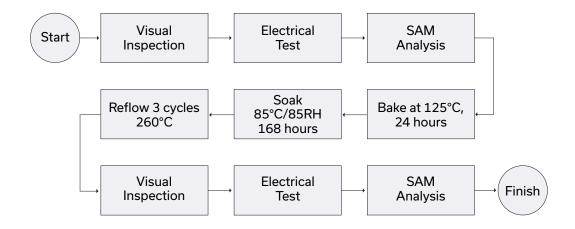
 50Ω 500 to 6000 MHz Absorptive RF Switch with Internal Driver Single Supply Voltage, +3 V to +5 V

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. TO ACCESS

CLICK HERE

D. C	Data Table
Performance Data	Swept Graphs
Case Style DG1235-1 Plastic package, Lead Finish: Nickel Palladium Gold	
Tape & Reel	F87
Standard Quantities Available on Reel	7" Reels with 20, 50, 100, 200, or 500 devices 13" Reels with 3000 devices
Suggested Layout for PCB Design	PL-278
Evaluation Board	TB-486+
Environmental Ratings	ENV41

ESD RATING


Human Body Model (HBM): Class 1A (250 to < 500 V) in accordance with JESD22-A114

Machine Model (MM): Class A (Passes 50 V) in accordance with JESD22-A115

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html