Content of the second state of the second stat

USB/RS232 to SPI Converter

Mini-Circuits®

30/1/2012 Page 1

Contents

ltem	Description	Page
1	Overview	3
2	Operating in a Windows [®] Environment	4 - 9
2.1	Software supported by ActiveX [®] and .NET Class Library	5 - 6
2.2	DLL Structure (Functions & Properties)	7 - 8
2.3	Sample code	9
3	Operating in a Linux [®] Environment	10 - 14
3.1	Sample code	14

This programming Manual is intended for customers wishing to create their own interface for Mini-Circuits' USB/RS232 to SPI Converters.

Mini-Circuits offers support for USB Portable Test Equipment (PTE) in Windows[®] and Linux[®] Operating Systems, in a for variety of programming environments including third-party applications such as LabVIEW[®] and MATLAB[®] through .NET assembly and ActiveX[®] Controls to write your own customized control applications.

Mini-Circuits' CD package Includes: GUI program installation, DLL Objects 32/64 bit, Linux Support, project examples for 3RD party software and Documents. The latest CD version is available for download at http://www.minicircuits.com/support/software_download.html, see Figure 1.

Product Name	Version	Download	Description / Instructions	Models Supported
RS232/USB To SPI Converter - Setup	AO	Download	RS232/USB To SPI GUI program for Windows 32/64 bit - Latest Version - Setup.	
RS232/USB To SPI Converter - CD	A0	Download	Latest Version of the entire RS232/USB to SPI CD: GUI program, DLL COM Objects 32/64 bit, Linux Support and Documents. When extracting the files after download, keep the folder names.	
MCL RS232 USB To SPI.dll	May 1, 2011	Download	DII - ActiveX com object file. Registering to Windows is required. Recommended for 32 bit programming.	
MCL_RS232_USB_To_SPI_64.dll	May 1, 2011	Download	DIINET Class Library. Recommended for 64/32 bit programming.	
Programming Manual	May 1, 2012	Download	PDF File: Detailed Guide for Programmers.	
Project Examples	May 1 2012	Download	Projects Examples for several Programming environments such as: VB6, VB.NET, C#, C++, Delphi, LabView, Matlab, LINUX. When extracting the Zip file after download: keep the folder names	RS232/USB-SPI RS232/USB-SPI-N

Figure 1 – Download Screen

2 - Operating in a Windows® Environment 32/64Bits OS with USB HID Support

The DLL Object (Dynamic Link Library) - Concept:

Dynamic Link Library is Microsoft's implementation of the shared library concept in the Microsoft Windows[®] environment.

DLLs provide a mechanism for shared code and data, allowing a developer of shared code/data to upgrade functionality without requiring applications to be re-linked or recompiled.

Mini-Circuits' CD package provides DLL Objects in order to allow your own Software Application to interface with the functions of the Mini-Circuits' USB Portable Test Equipment hardware, see Figure 2.

Figure 2 – DLL Interface

Mini-Circuits' provides two DLLs files:

- ActiveX[®] com object MCL_RS232_USB_To_SPI.dll→ Click to download <u>http://www.minicircuits.com/support/software_download.html</u> ActiveX[®] com object can be used in any programming environment that supports ActiveX[®] objects - third party COM (Component Object Model) compliant application. The ActiveX[®] DLL should be registered using RegSvr32 (see pages 5 and 6 - Register an ActiveX[®] DLL).
- .NET Class Library MCL_RS232_USB_To_SPI64.dll→ Click to download <u>http://www.minicircuits.com/support/software_download.html</u> .NET object – a logical unit of functionality that runs under the control of the .NET

2.1 - Software supported by ActiveX[®] and .NET Class Library

MCL_RS232_USB_To_SPI.dll - ActiveX [®] com object	MCL_RS232_USB_To_SPI64.dll NET Class Library			
Instructions	Instructions			
 For 32bit Windows OS, copy MCL_RS232_USB_To_SPI.dll to windows\system32 folder 	 For 32bit Windows OS copy MCL_RS232_USB_To_SPI64.dll to windows\system32 folder 			
 For 64bit Windows OS, copy MCL_RS232_USB_To_SPI.dll to windows\SysWOW64 folder 	 For 64bit Windows OS copy MCL_RS232_USB_To_SPI64.dll to windows\SysWOW64 folder 			
 Register the DLL, see instructions below 	 DLL Registry is not required 			
Visual Studio 6 (VC++,VB [®]) NI LabVIEW [®] 8.0 or newer MATLAB [®] 7 or newer Delphi [®] Borland C++ Agilent VEE [®] Python	NI CVI NET (VC++, VB.net, C# 2003,2005,2008,2010) NI LabVIEW [®] _2009 or newer MATLAB [®] 2008 or newer Delphi [®] Borland C++			
A A A A A A A A A A A A A A A A A A A				

* Additional 3RD party software are supported, contact Mini-Circuits for details.

How to register mcl_pm.dll, 32-bit DLL, on a 32-bit Windows operating system?

Open the Run Command from the Start Menu and type regsvr32 c:\windows\system32\MCL_RS232_USB_To_SPI.dll

	5	Microsoft Update			
		Set Program Access and Defaults			
	1	Windows Catalog			
	ŧ.	WinZip			
	B	Show Desktop			
	6	Babylon	_		
	i	Programs •		Run	? 🛛
	onal 🔊	Documents •			
	ess	Settings •		1	Type the name of a program, folder, document, or Internet resource, and Windows will open it for you.
4	2	Search 🕨		Open:	c/)windows)cystem32)MCL_PS232_LISB_To_SPI_dl
\$	2	Help and Support		Obern.	
	Š 🖅	Run			
		Shut Down			OK Cancel Browse
	樻 sta	rt 📄 🖻 📑 🛣 🖉 🖸 0			
		🙆 5 Microsoft Of 👻	Fi	igure 3 –	Run Command

How to register MCL_RS232_USB_To_SPI.dll, 32-bit DLL on a 64-bit Windows OS?

Run the Command Prompt as Administrator, see figure 4

Type regsvr32 c:\windows\syswow64\ MCL_RS232_USB_To_SPI.dll, see figure 5

Figure 5 – Type command

Click Enter, see figure 6.

Figure 6 – Registration succeeded

2.2 - DLL Structure (both MCL RS232 USB To SPI.dll and MCL RS232 USB To SPI64.dll)

DLLs Functions MCL_RS232_USB_To_SPI.dll and MCL_RS232_USB_To_SPI64.dll

- 1. Int Send_SPI(String str_to_send)
- 2. Int Read_ModelName(String ModelName)
- 3. Int Read_SN(String SN)
- 4. String Read_SPI(Short NoOfBit, Short WaitForReady,String str_Ret)
- 5. Void Connect()
 6. Void Disconnect()

Note: The DLL is useful only for converting USB to SPI Register, otherwise in case of converting RS232 to SPI see page 8.

Functions Description:

- 1. Int Send_SPI(String str_to_send) Sending SPI Data Out: The function returns 1 on success.
- Int Read_ModelName(String ModelName) Getting the Device Model Name: The function returns 1 on success
- 3. Int Read_SN(String SN) Getting the Device Serial Number: The function returns 1 on success
- 4. String Read_SPI(Short NoOfBit, Short WaitForReady, String str_Ret)

Receiving SPI Data:

BoOfBit= The Number Of Bits to Read from SPI. WaitForReady if>0 then wait for "Ready Bit" to go Low. If = 0 no need to wait for "Ready Bit". Str Ret will have the Reading Data. (Optional *string SN)

5. Void Connect()

- Open Connection.

6. Void Disconnect()

- Close connection. It is strongly recommended to disconnect the device before ending the program.

In case of converting RS232 to SPI, create a serial RS232 connection as follows: Setup programming: Baud=9600, Parity=E, Data_Bits=8

Connect RS232 cable from 9 pin connector to the Computer RS232 port. Connect to USB socket to PC or to 5 Volt adaptor.

Communication based on sending and receiving ASCII data over RS232 port.

1. Sending SPI Data OUT: Send the text "B[Binary Data]E" (MSB send first).

The device will return "ACK". Example: The command "B0110111011011E" will cause 16 Bits send to SPI Data out. The device will return "ACK".

2. Getting the Device Model Name: Send the text "M"

The device will return [DeviceModelName]

3. Getting the Device Serial Number: Send the text "S"

The device will return [DeviceSerialNumber].

4. Receiving SPI Data: Send the Text "R##E"

##=number of bits to get from SPI. The device will return "B[Binary Data]E"

Example: The command "R16" will cause to read 16 bit from SPI DATA IN.

5. Wait for "Ready bit" to go Low then Receiving SPI Data: Send the Text "RR##E" ##=number of bits to get from SPI.

The device will return "B[Binary Data]E"

Example: The command "R16" will cause to read 16 bit from SPI DATA IN.

2.3 - Sample code

The CD package also includes a number of sample programs developed to show you how to write your own programs. The sample programs were developed in Visual C++[®], Visual Basic[®], C# and LabVIEW[®]. The sample programs provide an excellent starting point to write your own applications.

The complete project examples are available for download at: http://www.minicircuits.com/support/software_download.html

3 - Operating in a Linux[®] Environment 32/64Bits OS with USB HID Support

The RS232/USB to SPI Converter is based on 2 options of controls:

A. HID USB control

B. RS232 Control.

For the first option: convert USB to SPI:

To open a connection to the power sensor, Vendor ID and Product ID are required:

- Mini-Circuits Vendor ID is: 0x20CE
- RS232/USB to SPI Converter ID is: 0x25

The communication with the sensor is done by USB Interrupt. The transmitted and received buffer sizes are 64 Bytes.

Transmit Array should be 64 bytes	[Byte 0][Byte1][Byte2]	[Byte 63]
Receive Array contains 64 bytes	[Byte 0][Byte1][Byte2]	[Byte 63]

Commands List

#	Description	Command Code – Byte[0]	Additional Transmitted Bytes
1	Get device Model Name	40	
2	Get device Serial Number	41	
3	Send SPI Out	6	Byte[1] – Number of Data Bits Byte[2+N] – Data
4	Set pulse Width	8	Byte[1] - Pulse Width in micro seconds

* See detailed description on pages 10 - 13

1. Get the device Model Name:

To get the devise Model Name, code number 40 should be sent

Transmit Array

- Byte[0]=40
- Bytes[1] through [63] are NC Not Care

Received Array

The Model Name will be returned in the receive array of ASCII characters. End of Model Name is signified by a 0 value.

- Byte[0]=40
- Byte[1] to the byte before the 0 value = Model Name
- All bytes after the 0 value up to byte [63] contain random values

2. Get Device Serial Number

To get the device Serial Number, code number 41 should be sent

Transmit Array

- Byte[0]=41
- Bytes[1] through [63] are NC Not Care

Received Array

The Serial Number will be returned in the receive array of ASCII characters. End of S/N is signified by a 0 value.

- Byte[0]=41
- Byte[1] to the byte before the 0 value = Serial Number
- All bytes after the 0 value up to byte [63] contain random values

3. Send SPI OUT

Transmit Array

- Byte[0]=6
- Byte[1]=N The number of data bits to send
- Byte[2] Byte[N+2]= the data value to send = 1 or 0
- Bytes[3] through [63] are NC Not Care

| Byte |
|------|------|------|------|------|------|------|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] |
| 6 | 4 | 1 | 0 | 0 | 1 | 1 |

Received Array

- Byte[0]=6
- Bytes[1] through [63] contain random values

4. Set the Pulse Width of the SPI, Data, Clock and LE

Transmit Array

- Byte[0]=8
- Byte[1]=Pulse Width in micro seconds
- Bytes[2] through [63] are NC Not Care

Received Array

- Byte[0]=8
- Bytes[1] through [63] contain random values

For the second option convert RS232 to SPI:

Linux programmers need to create connection to serial RS232 port with the following: Setup programming: Baud=9600, Parity=E, Data_Bits=8

Connect RS232 cable from 9 pin connector to the Computer RS232 port. Connect to USB socket to PC or to 5 Volt adaptor.

Communication based on sending and receiving ASCII data over RS232 port.

1. Sending SPI Data OUT: Send the text "B[Binary Data]E" (MSB send first).

The device will return "ACK". Example: The command "B0110111011011011E" will cause 16 Bits send to SPI Data out. The device will return "ACK".

2. Getting the Device Model Name: Send the text "M"

The device will return [DeviceModelName]

3. Getting the Device Serial Number: Send the text "S"

The device will return [DeviceSerialNumber].

4. Receiving SPI Data: Send the Text "R##E"

##=number of bits to get from SPI. The device will return "B[Binary Data]E"

Example: The command "R16" will cause to read 16 bit from SPI DATA IN.

5. Wait for "Ready bit" to go Low then Receiving SPI Data: Send the Text "RR##E" ##=number of bits to get from SPI.

The device will return "B[Binary Data]E"

Example: The command "R16" will cause to read 16 bit from SPI DATA IN.

3.1 – Sample code

The Linux Folder in the CD package contains the following:

• usb2IO.c example source code using the libhid & libusb libraries to open the USB HID device.

The complete project samples are available on the CD or at: http://www.minicircuits.com/support/software_download.html

Windows, Visual Basic and Visual C++ are registered trademarks of Microsoft Corporation. LabVIEW is a registered trademark of National Instruments Corp. Delphi is a registered trademark of Codegear LLC. MATLAB is a registered trademark of MathWorks, Inc. Agilent VEE is a registered trademark of Agilent. Neither Mini-Circuits nor the Mini-Circuits USB/RS232 to SPI Converters are affiliated with or endorsed by the owners of the above referenced trademarks.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

