
 Page 30/1/2012 1

 Mini-Circuits®

Programming Manual

For

USB Synthesized Signal Generator Series

 Page 30/1/2012 2

Item Description Page

1 Overview………………………………………………………………………… 3

2 Operating in a Windows® Environment……….……………………………... 4 - 10

2.1 Software supported by ActiveX® and .NET Class Library……………… 5 - 6

2.2 DLL Structure (Functions & Properties)………………………………….. 7 - 9

2.3 Sample code……………………………………………………………...... 10

3 Operating in a Linux® Environment……….……………….…………………. 11 - 16

3.1 Sample code……………………………………………………………...... 16

Contents

 Page 30/1/2012 3

This programming Manual is intended for customers wishing to create their own interface for Mini-
Circuits' USB Synthesized Signal Generators.

Mini-Circuits offers support for USB Portable Test Equipment (PTE) in Windows® and Linux®
Operating Systems, in a variety of programming environments including third-party applications such as
LabVIEW® and MATLAB® through .NET assembly and ActiveX® Controls to write your own customized
control applications.

Mini-Circuits' CD package Includes: GUI program installation, DLL Objects 32/64 bit, Linux Support,
project examples for 3RD party software and Documents. The latest CD version is available for
download at http://www.minicircuits.com/support/software_download.html , see Figure 1.

Figure 1 – Download Screen

1- Overview

 Page 30/1/2012 4

The DLL Object (Dynamic Link Library) - Concept:

Dynamic Link Library is Microsoft's implementation of the shared library concept in the Microsoft
Windows® environment.

DLLs provide a mechanism for shared code and data, allowing a developer of shared code/data to
upgrade functionality without requiring applications to be re-linked or recompiled.

Mini-Circuits' CD package provides DLL Objects in order to allow your own Software Application to
interface with the functions of the Mini-Circuits' USB Portable Test Equipment hardware, see Figure 2.

Figure 2 – DLL Interface

Mini-Circuits' provides two DLLs files:

1. ActiveX® com object - mcl_Gen.dll Click to download http://www.minicircuits.com/support/software_download.html
ActiveX® com object can be used in any programming environment that supports ActiveX®
objects - third party COM (Component Object Model) compliant application. The ActiveX® DLL
should be registered using RegSvr32 (see pages 5 and 6 - Register an ActiveX® DLL).

2. .NET Class Library - mcl_Gen64.dll Click to download http://www.minicircuits.com/support/software_download.html

.NET object – a logical unit of functionality that runs under the control of the .NET

DLL (Dynamic Link Libraries)

User's Software Application

(3RD Party Software Such as LabVIEW®, Delphi®, C++, C#, Visual Basic®, and .Net)

Mini-Circuits' USB Portable Test Equipment hardware

2 - Operating in a Windows® Environment 32/64Bits OS with USB HID Support

 Page 30/1/2012 5

mcl_Gen.dll - ActiveX® com object mcl_Gen.dll - .NET Class Library

Instructions

 For 32bit Windows OS, copy mcl_pm.dll
to windows\system32 folder

 For 64bit Windows OS, copy mcl_pm.dll

to windows\SysWOW64 folder

 Register the DLL, see instructions below

Instructions

 For 32bit Windows OS copy mcl_pm64.dll to
windows\system32 folder

 For 64bit Windows OS copy mcl_pm64.dll to

windows\SysWOW64 folder

 DLL Registry is not required

Visual Studio 6 (VC++,VB®)
NI LabVIEW® 8.0 or newer
MATLAB® 7 or newer
Delphi®
Borland C++
Agilent VEE®
Python

NI CVI
NET (VC++, VB.net, C# 2003,2005,2008,2010)
NI LabVIEW®_2009 or newer
MATLAB® 2008 or newer
Delphi®
Borland C++

* Additional 3RD party software are supported, contact Mini-Circuits for details.

How to register mcl_Gen.dll, 32-bit DLL, on a 32-bit Windows operating system?

Open the Run Command from the Start Menu and type regsvr32 c:\windows\system32\mcl_Gen.dll

Figure 3 – Run Command

2.1 - Software supported by ActiveX® and .NET Class Library

 Page 30/1/2012 6

How to register mcl_Gen.dll, 32-bit DLL on a 64-bit Windows operating system?

 Run the Command Prompt as Administrator, see figure 4

Figure 4 – Command Prompt

 Type regsvr32 c:\windows\syswow64\mcl_Gen.dll, see figure 5

Figure 5 – Type command

 Click Enter, see figure 6.

Figure 6 – Registration succeeded

 Page 30/1/2012 7

Functions Description:

1. Int Connect(Optional *String SN)
This function creates a USB connection to the device.

SN is the Generator Serial Number.
SN parameter is needed when more than one Generator is connected to the computer.

The function returns a value as follows:
0=Failed to connect to device
1=Success
2=Device is already connected
3=SN is not available

2. Int ConnectByAddress(Optional Short Address)

Address parameter is required in case more than 1 Generator is connected to the PC and you
want to connect the unit by Address instead of SN.
This is an alternative to function 1 (connect by SN)

Address parameter is the Address of the Generator.
Address value can be any integer number between 1 to 255 and can be changed by software .

DLLs Functions mcl_Gen.dll / mcl_Gen64.dll

1. Int Connect(Optional *string SN)
2. Int ConnectByAddress(Optional Short Address)
3. Void Disconnect()
4. Int SetPowerON()
5. Int SetPowerOFF()
6. Byte SetFreqAndPower(Double Fr, Float Pr, Int TriggerOut)
7. Byte SetFreq(Double Fr, Int TriggerOut)
8. Byte SetPower(Float Pr, Int TriggerOut)
9. Byte Set_Noise_Spur_Mode(Int nsm)
10. Int ExtRefDetected()
11. Int Read_ModelName(String ModelName)
12. Int Read_SN(String SN)
13. Int GetTriggerIn_Status()
14. Float GetGenMaxFreq()
15. Float GetGenMinFreq()
16. Float GetGenMaxPower()
17. Float GetGenMinPower()
18. Float GetGenStepFreq()
19. Byte Get_Noise_Spur_Mode(Int nsm)
20. Int GetGenStatus(Byte Locked, Int PowerIsOn, Double Fr , Float pr, UNLEVELHigh, UNLEVELLow)
21. Int GetStatus()
22. Int Set_Address(Int Address)
23. Int Get_Address()
24. Int Get_Available_SN_List(String[] SN_List)
25. Int Get_Available_Address_List(String[] Add_List)

2.2 - DLL Structure (both mcl_Gen.dll and mcl_Gen64.dll)

 Page 30/1/2012 8

3. Void Disconnect()
Close connection to the Generator.
Shutting down the program without disconnecting the device may result in connection problem to
the device. If you experience problems, shut down the program, then unplug the Generator from
the computer and plug it back in before starting the program again.

4. Int SetPowerON() - Turn RF Power ON

 Function returns nun zero number upon success.

5. Int SetPowerOFF() - Turn RF Power OFF
 Function returns nun zero number upon success.

6. Byte SetFreqAndPower(Double Fr, Float Pr, Int TriggerOut)

Sets the Generator Frequency and Power value and enables or disables Trigger-Out function.

 Fr is the requested Frequency in MHz.
 Pr is the requested Power in dBm.
 TriggerOut=1 to enable Trigger Out or =0 to disable Trigger Out.

7. Byte SetFreq(Double Fr, Int TriggerOut)

Sets the Generator Frequency value without changing power values and enables or disables
Trigger-Out function

 Fr is the requested Frequency in MHz.
 TriggerOut=1 to enable Trigger Out or =0 to disable Trigger Out .

8. Byte SetPower(Float Pr, Int TriggerOut)

Sets the Generator Power value without changing frequency values and enables or disables
Trigger-Out function.

 Pr is the requested Power in dBm.
 TriggerOut=1 to enable Trigger Out or =0 to disable Trigger Out.

9. Byte Set_Noise_Spur_Mode(Int nsm)

 Set the Low Spur or Low Noise Mode.

 nsm=1 for Low Spur mode or nsm=0 for Low Noise Mode (Default).

10. Int ExtRefDetected ()

 The function returns 1, if 10 MHz External Reference is detected.

11. Int Read_ModelName(String ModelName)
 Read the Model Name of the Generator device. Returns 1 upon success.

12. Int Read_SN(String SN)
 Read the Serial Number of the Generator device. Returns 1 upon success.

13. Int GetTriggerIn_Status()
Function returns the Trigger Status.

14. Float GetGenMaxFreq()

Function returns the Generator's maximum frequency in MHz.

 Page 30/1/2012 9

15. Float GetGenMinFreq()
Function returns the Generator's minimum fFrequency in MHz.

16. Float GetGenMaxPower()
Function returns the Generator's maximum power in dBm.

17. Float GetGenMinPower()
Function returns the Generator's minimum power in dBm.

18. Float GetGenStepFreq()

Function returns the Generator's Step Freq in kHz.

19. Byte Get_Noise_Spur_Mode(Int nsm)
Get the status of Noise/Spur Mode.

 nsm is set to 1 for Low Spur mode or 0 for Low Noise Mode.

20. Int GetGenStatus(Byte Locked, Int PowerIsOn, Double Fr, Float pr, UNLEVELHigh,
UNLEVELLow)

Use this function to get the status of the Generator.

 Locked=1 if the Frequency is Locked.
 PowerIsOn=1 if the RF Power is ON.
 Fr will set to the Generator frequency in MHz.
 pr will set to the Generator Power in dBm.
 UNLEVELHigh will be set to 1 if the Generator Power is too high and the Generator cannot

reach the Requested Power
 UNLEVELLow will be set to 1 if the Generator Power is too low and the Generator cannot reach

the Requested Power

21. Int GetStatus()

Get the status of the device connection.

22. Int Set_Address(Int Address)

Sets the address of the unit. The address can be any integer number between 1 to 255.
The function returns a non-zero value upon success.

23. Int Get_Address ()

Returns the device address.
The function returns a non-zero value upon success.

24. Int Get_Available_SN_List(String[] SN_List)

String SN_List variable contains the SN of all available Generators connected to the computer.
The function returns the Number of Generators.

25. Int Get_Available_Address_List(String[] Add_List)

String Add_List variable contains the Addresses all available Generators connected to the
computer.
The function returns the Number of Generators.

 Page 30/1/2012 10

The CD package also includes a number of sample programs developed to show you how to write your
own programs. The sample programs were developed in Visual C++®, Visual Basic®, C# and
LabVIEW®. The sample programs provide an excellent starting point to write your own applications.

The complete project examples are available for download at:
http://www.minicircuits.com/support/software_download.html

2.3 - Sample code

 Page 30/1/2012 11

To open a connection to a Synthesized Signal Generators, Vendor ID and Product ID are required:

 Mini-Circuits Vendor ID is: 0x20CE
 USB Synthesized Signal Generators Product ID is: 0x12

The communication with the Generator is done by USB Interrupt.
The transmitted and received buffer sizes are 64 Bytes.

Transmit Array should be 64 bytes [Byte 0][Byte1][Byte2]………[Byte 63]
Receive Array contains 64 bytes [Byte 0][Byte1][Byte2]………[Byte 63]

Commands List:

Description Command Code –
Byte[0]

Additional Transmitted Bytes

1 Get device Model Name 40 --

2 Get device Serial Number 41 --

3 Set both frequency & power 103

Byte[1] to Byte[4] – Freq in Hz
Byte[5] '1' if Power <0 else '0'
Byte[6] to Byte [7] Absolute Power in dBm
Byte[8] '1' if TriggerOut is required,else '0'

4 Set the frequency 101

Byte[1] to Byte[4] – Freq in Hz
Byte[5] '1' if TriggerOut is required,else '0'

5 Set the power 102

Byte[1] '1' if Power <0 else '0'
Byte[2] to Byte [3] Absolute Power in dBm
Byte[4] '1' if TriggerOut is required,else '0'

6 Set RF Power ON/OFF 104

Byte[1] '1' for Power ON, '0' for OFF

7 Set Noise_Spur_Mode 106

Byte[1] '1' Low Spur Mode,
 '0' for low Noise Mode

8 Get Generator status 105

--

9 Get Generator minimum frequency 42

--

10 Get Generator maximum frequency 43

--

11 Get Generator step frequency 44

--

12 Get Generator minimum power 45

--

13 Get Generator minimum power 46

--

* See detailed description on pages 12 - 15

3 - Operating in a Linux® Environment 32/64Bits OS with USB HID Support

 Page 30/1/2012 12

1. Get Device Model Name:

To get the device Model Name, code number 40 should be sent

Transmit Array

 Byte[0]=40
 Bytes[1] through [63] are NC - Not Care

Received Array

The Model Name will be returned in the receive array of ASCII characters. End of Model
Name is signified by a 0 value.

 Byte[0]=40
 Byte[1] to the byte before the 0 value = Model Name
 All bytes after the 0 value up to byte [63] contain random values

2. Get Device Serial Number

To get the device serial number, code number 40 should be sent

Transmit Array

 Byte[0]=41
 Bytes[1] through [63] are NC - Not Care

Received Array

The Serial Number will be returned in the receive array of ASCII characters. End of Serial
Number is signified by a 0 value.

 Byte[0]=41
 Byte[1] to the byte before the 0 value = Serial Number
 All bytes after the 0 value up to byte [63] contain random values

3. Set both Freq And Power

Transmit Array

 Byte[0]=103
 Byte[1] to Byte[4]= requested frequency in Hz. (Byte[1] is the MSB).
 Byte[5] = '1' if the requested Power lower than Zero, else '0'
 Byte[6] to Byte[7]= The absolute value of the power in dBm (Byte[7] is the MSB)
 Byte[8]= '1' if Trigger Out is required, else '0'
 Bytes[9] through [63] are NC - Not Care

Received Array

 Byte[0]=103
 Bytes[1] through [63] contain random values

 Page 30/1/2012 13

4. Set Freq:

Transmit Array

 Byte[0]=101
 Byte[1] to Byte[4]= requested frequency in Hz. (Byte[1] is the MSB).
 Byte[5] = '1' if Trigger Out is required, else '0'
 Bytes[6] through [63] are NC - Not Care

Received Array

 Byte[0]=101
 Bytes[1] through [63] contain random values

5. Set Power:

Transmit Array

 Byte[0]=102
 Byte[1]= '1' if the requested Power lower than Zero, else '0'
 Byte[2] to Byte[3]= The absolute value of the power in dBm (Byte[3] is the MSB)
 Byte[5] = '1' if Trigger Out is required, else '0'
 Byte[6]= '1' if Trigger Out is required, else '0'
 Bytes[7] through [63] are NC - Not Care

Received Array

 Byte[0]=102
 Bytes[1] through [63] contain random values

6. Set RF Power ON/OFF:

Transmit Array

 Byte[0]=104
 Byte[1]= '1' for Power ON, '0' for OFF
 Bytes[2] through [63] are NC - Not Care

Received Array

 Byte[0]=104
 Bytes[1] through [63] contain random values

7. Set Set_Noise_Spur_Mode:

Transmit Array

 Byte[0]=106
 Byte[1]= '1' Low Spur Mode, '0' Low Noise Mode (Default)
 Bytes[2] through [63] are NC - Not Care

Received Array

 Byte[0]=106
 Bytes[1] through [63] contain random values

 Page 30/1/2012 14

8. GetGenStatus - Get the Generator status (current freq , power etc)

Transmit Array

 Byte[0]=105
 Bytes[1] through [63] are NC - Not Care

Received Array

 Byte[0]=105
 Byte[1]= 1 RF ON, 0 if RF OFF
 Byte[2]= 1 if frequency is Locked, 0 if frequency is Unlocked
 Byte[3] through Byte[6] represent the Generator current frequency in Hz. (Byte4 is the

MSB).
 Byte[7]= 1 if the Generator current Generator setting power is below 0Bm.
 Byte[8] through Byte[9] Absolute of the current Generator power(dBm).Byte9 is the MSB
 Byte[10]= 1 if the requested Power is too High - Unlevel High
 Byte[11]= if the requested Power is too Low - Unlevel Low.
 Bytes[12] through [63] contain random values

9. GetGenMinFreq

Transmit Array

 Byte[0]=42
 Bytes[1] through [63] are NC - Not Care

Received Array

 Byte[0]=42
 Byte[1] through Byte[4]= Generator's minimum frequency in Hz. Byte[1] is the MSB
 Bytes[5] through [63] contain random values

10. GetGenMaxFreq

Transmit Array

 Byte[0]=43
 Bytes[1] through [63] are NC - Not Care

Received Array

 Byte[0]=43
 Byte[1] through Byte[4]= Generator's maximum frequency in Hz. Byte[1] is the MSB
 Bytes[5] through [63] contain random values

11. GetGenStepFreq

Transmit Array

 Byte[0]=44
 Bytes[1] through [63] are NC - Not Care

Received Array

 Byte[0]=44
 Byte[1] through Byte[4]= Generator's step frequency in Hz. Byte[1] is the MSB
 Bytes[5] through [63] contain random values

 Page 30/1/2012 15

12. GetGenMinPower

Transmit Array

 Byte[0]=45
 Bytes[1] through [63] are NC - Not Care

Received Array

 Byte[0]=42
 Byte[1]= '1' if the minimum power is negative, else '0'
 Byte[2] through Byte[3]=Generator's minimum power in dBm absolute value. Byte[2] is the

MSB
 Bytes[4] through [63] contain random values

13. GetGenMaxPower

Transmit Array

 Byte[0]=46
 Bytes[1] through [63] are NC - Not Care

Received Array

 Byte[0]=46
 Byte[1]= '1' in case the maximum power is negative, else '0'
 Byte[2] through Byte[3]=Generator's maximum power in dBm absolute value. Byte[2] is

the MSB
 Bytes[4] through [63] contain random values

 Page 30/1/2012 16

The Linux Folder in the CD package contains the following:

The Linux Folder in the CD package contains the following:

 Generator.c example source code using the libhid & libusb libraries to open the USB HID device.

The complete project samples are available on the CD or at:
http://www.minicircuits.com/support/software_download.html

Windows, Visual Basic and Visual C++ are registered trademarks of Microsoft Corporation. LabVIEW is a
registered trademark of National Instruments Corp. Delphi is a registered trademark of Codegear LLC. MATLAB
is a registered trademark of MathWorks, Inc. Agilent VEE is a registered trademark of Agilent. Neither Mini-
Circuits nor the Mini-Circuits USB Synthesized Signal Generators are affiliated with or endorsed by the owners
of the above referenced trademarks.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

3.1 – Sample code

