$50 \Omega 20$ to 1600 MHz

The Big Deal

- 1W RF power handling
- Low unbalance, $0.4 \mathrm{~dB}, 3^{\circ}$
- Small size, $0.27 \times 0.31 \times 0.22$ "

CASE STYLE: CD636

Product Overview

Mini-Circuits' ADT2-162T+ is a surface-mount balanced-to-balanced transformer with a secondary/primary impedance ratio of $2: 1$. This model covers the 20 to 1600 MHz band with low insertion loss (1.2 dB typ.) as well as low phase unbalance (3°) and amplitude unbalance (0.4 dB). The unit comes enclosed in a miniature, leadless plastic package measuring just $0.27 \times 0.31 \times 0.22^{\prime \prime}$, ideal for dense circuit board layouts.

Key Features

Feature	Advantages
Wideband, 20 to 1600 MHz	Supports a wide range of applications including VHF/UHF, cellular, PCS and more.
Low insertion loss, 1.2 dB typ.	Good transmission of signal power from input to output.
1W RF power handling	Supports a wide range of power requirements.
Low phase and amplitude unbalance, $3^{\circ}, 0.4 \mathrm{~dB}$	Low phase and amplitude unbalance can improve a system's electromagnetic compat- ibility by rejecting unwanted common-mode noise
Small footprint, $0.27 \times 0.31 \times 0.22^{\prime \prime}$	Accommodates tight space requirements for dense PCB layouts.

Maximum Ratings

Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
RF Power	1.0 W
Permanent damage may occur if any of these limits are exceeded.	

Pin Connections

PRIMARY DOT	3
PRIMARY	1
SECONDARY DOT	6
SECONDARY	4
SECONDARY CT	5
NOT USED	2

Outline Drawing

Demo Board MCL P/N: TB-430+

Config. P1

Features

- leaded surface mount
- wideband frequency $20-1600 \mathrm{MHz}$
- excellent amplitude balance, 0.4 dB typ. and phase unbalance, 3 deg. typ.

Generic photo used for illustration purposes only

CASE STYLE: CD636

+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Applications

- VHF/UHF
- balanced amplifiers
- info structure

Available Tape and Reel at no extra cost Devices/Reel	
Reel Size	$20,50,100,200$
$7^{\prime \prime}$	500,1000
$13^{\prime \prime}$	

- A/D and D/A converter

Transformer Electrical Specifications@25 ${ }^{\circ} \mathrm{C}$

Parameter	Frequency (MHz)	Min.	Typ.	Max.	Unit
Impedance Ratio (secondary / primary)			2		
Frequency Range		20		1600	MHz
Insertion Loss* (average)	$50-1250$	-	0.5	1.0	
	$25-1400$	-	1.2	2.0	dB
	$20-1600$	-	2.0	3.0	
Phase Unbalance \pm	$50-1250$	-	0.4	0.75	dB
	$25-100$	-	0.5	0.85	
Input Return Loss	$20-1600$	-	0.6	4	Degree
Common mode rejection	$50-1250$	-	2	5	
	$25-100$	-	2.5	3.0	-

* Insertion Loss is referenced to mid-band loss, 1.0 dB typ.

Typical Performance Data

FREQUENCY (MHz)	INSERTION LOSS (dB)	INPUT R. LOSS (dB)	AMPLITUDE UNBALANCE (dB)	PHASE UNBALANCE (Deg.)
20	2.47	4.74	0.35	0.06
25	1.92	5.94	0.35	0.03
50	1.07	9.79	0.35	0.07
100	0.88	11.86	0.36	0.25
200	0.96	10.98	0.33	0.41
600	1.51	7.53	0.10	0.42
1000	1.15	11.44	0.16	0.70
1218	1.02	13.23	0.06	1.96
1400	1.47	7.63	0.11	3.70
1600	2.55			0.01

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circciit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled

Typical Performance Data

FREQUENCY (MHz)	AVERAGE INSERTION LOSS (dB)	INPUT RETURN LOSS (dB)	AMPLITUDE UNBALANCE (dB)	PHASE UNBALANCE (deg.)
15	3.45	3.39	0.36	0.16
20	2.47	4.74	0.35	0.12
25	1.92	5.94	0.35	0.06
50	1.07	9.79	0.35	0.14
70	0.93	11.17	0.35	0.22
90	0.89	11.77	0.34	0.39
95	0.88	11.83	0.35	0.44
100	0.88	11.86	0.36	0.50
105	0.88	11.89	0.36	0.54
150	0.89	11.72	0.33	0.66
200	0.96	10.98	0.33	0.81
300	1.14	9.44	0.30	1.09
400	1.31	8.37	0.26	1.13
500	1.44	7.75	0.19	1.10
600	1.51	7.53	0.10	0.84
680	1.52	7.61	0.03	0.65
684	1.51	7.63	0.03	0.63
700	1.51	7.67	0.01	0.56
800	1.43	8.25	0.06	0.06
900	1.31	9.40	0.13	0.60
1000	1.15	11.44	0.16	1.41
1100	1.03	15.18	0.14	2.39
1200	1.01	24.18	0.08	3.65
1218	1.02	27.23	0.06	3.93
1300	1.14	22.21	0.01	5.32
1400	1.47	13.83	0.11	7.40
1500	1.96	9.93	0.12	9.85
1600	2.55	7.63	0.01	12.13
1700	3.19	6.16	0.21	13.60
1800	3.81	5.20	0.47	13.84

Case Style

CD541
Outline Dimensions
CD542
CD636
CD637

Suggested Layout,
Tolerance to be within $\pm .002$

CASE\#	A	B	C	D	E	F	G	H	J	K	L	WT, GRAM
CD541	$\begin{gathered} .272 \\ (6.91) \end{gathered}$	$\begin{gathered} .310 \\ (7.87) \end{gathered}$	$\begin{gathered} .220 \\ (5.58) \end{gathered}$	$\begin{gathered} .100 \\ (2.54) \end{gathered}$	$\begin{gathered} .082 \\ (2.08) \end{gathered}$	$\begin{gathered} .055 \\ (1.40) \end{gathered}$	$\begin{gathered} .100 \\ (2.54) \end{gathered}$	$\begin{gathered} .030 \\ (0.76) \end{gathered}$	$\begin{gathered} .026 \\ (0.66) \end{gathered}$	$\begin{gathered} .065 \\ (1.65) \end{gathered}$	$\begin{gathered} .300 \\ (7.62) \end{gathered}$. 15
CD542					$\begin{gathered} .112 \\ (2.84) \end{gathered}$. 20
CD636					$\begin{gathered} .162 \\ (4.11) \end{gathered}$. 25
CD637					$\begin{gathered} .206 \\ (5.23) \end{gathered}$. 40

Dimensions are in inches (mm). Tolerances: 2 Pl. $\pm .01 ; 3$ Pl. $\pm .005$

Notes:

1. Case material: Plastic.
2. Termination finish:

For RoHS Case Styles: Tin plate over Nickel plate. All models, (+) suffix.
For RoHS-5 Case Styles: Tin-Lead plate. All models, no (+) suffix.

Tape \& Reel Packaging TR-F34

DEVICE ORIENTATION IN T\&R

DIRECTION OF FEED

Tape Width, mm	Device Cavity Pitch, mm	Reel Size, inches	$\begin{array}{r} \text { Device } \\ \text { see } \end{array}$	Reel
16	12	7	Small quantity standard (see note)	20
				50
				100
				200
		13	Standard	500
				1000

Note: Availability of small reel quantity varies by model.
Refer to pricing and availability on individual model dashboard.

Mini-Circuits carrier tape materials provide protection from ESD (Electro-Static Discharge) during handling and transportation. Tapes are static dissipative and comply with industry standards EIA-481/EIA-541.

Go to: www.minicircuits.com/pages/pdfs/tape.pdf

Mini-Circuits ISO 9001 \& ISO 14001 Certified

WMini-Circuits

All Mini-Circuits products are manufactured under exacting quality assurance and control standards, and are capable of meeting published specifications after being subjected to any or all of the following physical and environmental test.

Specification	Test/Inspection Condition	Reference/Spec
Operating Temperature	$-40^{\circ} \text { to } 85^{\circ} \mathrm{C}$ Ambient Environment	Individual Model Data Sheet
Storage Temperature	$-55^{\circ} \text { to } 100^{\circ} \mathrm{C}$ Ambient Environment	Individual Model Data Sheet
Humidity	90 to 95% RH, 240 hours, $50^{\circ} \mathrm{C}$	MIL-STD-202, Method 103, Condition A, Except $50^{\circ} \mathrm{C}$ and end-point electrical test done within 12 hours
Thermal Shock	-55° to $100^{\circ} \mathrm{C}, 100$ cycles	MIL-STD-202, Method 107, Condition A-3, except $+100^{\circ} \mathrm{C}$
Solder Reflow Heat	Sn-Pb Eutetic Process: $225^{\circ} \mathrm{C}$ peak Pb -Free Process $245^{\circ}-250^{\circ} \mathrm{C}$ peak	J-STD-020, Table 4-1, 4-2 and 5-2, Figure 5-1
Solderability	10X Magnification	J-STD-002, 95\% Coverage
Vibration (High Frequency)	20 g peak, $10-2000 \mathrm{~Hz}$, 12 times in each of three perpendicular directions (total 36)	MIL-STD-202, Method 204, Condition D
Mechanical Shock	$50 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$-sine, 18 shocks: 3 each direction, each of 3 axes	MIL-STD-202, Method 213, Condition A
Marking Resistance to Solvents	Isopropyl alcohol + mineral spirits at $25^{\circ} \mathrm{C}$; terpene defluxer at $25^{\circ} \mathrm{C}$; distilled water + proylene glycol monomethyl ether + monoethanolamine at $63^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MIL-STD-202, Method 215
ENV02T1 Rev: B 02/25/11 M130240 File: ENV02T1.pdf This document and its contents are the property of Mini-Circuits.		Page: 1

