Ultra High Dynamic Range # **Monolithic Amplifier Die** PHA-101-D+ 50Ω 0.05 to 1.5 GHz # **The Big Deal** - Ultra High IP3 - Broadband High Dynamic Range without external Matching Components ### **Product Overview** PHA-101-D+ (RoHS compliant) is an advanced wideband amplifier die fabricated using E-PHEMT technology and offers extremely high dynamic range over a broad frequency and with low noise figure. In addition, the PHA-101-D+ has good input and output return loss over a broad frequency range without the need for external matching components. Moreover, the PHA-101-D+ has demonstrated excellent reliability and has low thermal resistance. ## **Key Features** | Feature | Advantages | |--|--| | Broad Band: 0.05 to 1.5 GHz | Broadband covering primary wireless communications bands:
Cellular, PCS, LTE | | Extremely High IP3
Versus DC power Consumption
45 dBm typical at 0.9 GHz | The PHA-101-D+ matches industry leading IP3 performance relative to device size and power consumption. The combination of the design and E-PHEMT Structure provides enhanced linearity over a broad frequency range as evidence in the IP3 being typically 20 dB above the P 1dB point. This feature makes this amplifier ideal for use in: • Driver amplifiers for complex waveform up converter paths • Drivers in linearized transmit systems • Secondary amplifiers in ultra High Dynamic range receivers | | No External Matching Components
Required | Mini-Circuits PHA-101-D+ provides Input and Output Return Loss of 9.9-12.5 dB up to 1.5 GHz without the need for any external matching components | | Unpackaged die | Enables the user to integrate the amplifier directly into hybrids. | ## Ultra High Dynamic Range # **Monolithic Amplifier Die** # PHA-101-D+ 50Ω 0.05 to 1.5 GHz #### **Product Features** - High IP3, 45 dBm typ. at 0.9 GHz - Gain, 15.2 dB typ. at 0.9 GHz - High Pout, P1dB 26 dBm typ. at 0.9 GHz - Low noise figure, 4.0 dB at 0.9 GHz - No external matching components required #### +RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications Ordering Information: Refer to Last Page ### **Typical Applications** - Base station infrastructure - CATV - LTE ### **General Description** PHA-101-D+ (RoHS compliant) is an advanced wideband amplifier fabricated using E-PHEMT technology and offers extremely high dynamic range over a broad frequency range and with low noise figure. In addition, the PHA-101-D+ has good input and output return loss over a broad frequency range without the need for external matching components and has low thermal resistance. #### Simplified Schematic and Pad description | Pad | Description | |------------------|---| | RF IN | RF input pad. This pad requires the use of an external DC blocking capacitor chosen for the frequency of operation. | | RF-OUT and DC-IN | RF output and bias pad. DC voltage is present on this pad; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection. | | GND | Connections to ground. Bottom of die. | Note: 1. Bond Pad material - Gold 2. Bottom of Die - Gold plated ### Electrical Specifications¹ at 25°C, 50 ohms, unless noted | Parameter | Condition | | Vd=9V ¹ | | Units | |---|-----------|------|--------------------|------|-------| | | (MHz) | Min. | Тур. | Max. | | | Frequency range | | 0.05 | | 1.5 | GHz | | Gain | 50 | | 15.3 | | dB | | | 450 | | 15.5 | | | | | 900 | | 15.2 | | | | | 1500 | | 15.0 | | | | Input return loss | 50 | | 10.7 | | dB | | | 450 | | 11.4 | | | | | 900 | | 10.7 | | | | | 1500 | | 9.5 | | | | Output return loss | 50 | | 13.2 | | dB | | | 450 | | 10.7 | | | | | 900 | | 10.2 | | | | | 1500 | | 8.9 | | | | Reverse isolation | | | 20.5 | | dB | | Output power @1dB compression | 50 | | 25.3 | | dBm | | | 450 | | 26.2 | | | | | 900 | | 25.8 | | | | | 1500 | | 25.4 | | | | Output IP3 ² | 50 | | 47.0 | | dBm | | | 450 | | 44.3 | | | | | 900 | | 45.0 | | | | | 1500 | | 43.8 | | | | Noise figure | 50 | | 4.1 | | dB | | | 450 | | 3.9 | | | | | 900 | | 4.0 | | | | | 1500 | | 4.2 | | | | Device operating voltage | | | 9.0 | | V | | Device operating current | | | 182 | 220 | mA | | Device current variation vs. temperature ³ | | | -4 | | μΑ/°C | | Device current variation vs voltage | | | 0.024 | | mA/mV | | Thermal Resistance, junction-to-ground lead at 85°C stage temperature | | | 20 | | °C/W | ^{1.} Measured on Mini-Circuits Characterization test board. Die packaged in SOT-89 Package and soldered on TB-869+. ### **Absolute Maximum Ratings⁴** | Parameter | Ratings | |-------------------------------------|--| | Operating Temperature (ground lead) | -40°C to 85°C | | Operating Current at 9V | 360 mA | | Power Dissipation | 3.25 W | | Input Power (CW) | +24 dBm (5 minutes max.)
+20 dBm (continuous) | | DC Voltage at RF-OUT & DC-IN Pad | 11 V | Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation. Tested at Pout=8dBm / tone. (Current at 85°C — Current at -45°C)/130 ### **Characterization Test Circuit** **Fig 1**. Block Diagram of Test Circuit used for characterization. Die packaged in SOT-89 Package and soldered on TB-869+. Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and Noise figure measured using Agilent's N5242A PNA-X microwave network analyzer. #### **Conditions:** - 1. Gain and Return loss: Pin= -25dBm - 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 8 dBm/tone at output. ### **Die Layout** **Critical Dimensions** | Parameter | Values | |-------------------|----------| | Die Thickness, µm | 100 | | Die Width, µm | 1060 | | Die Length, μm | 800 | | Bond Pad Size, µm | 75 x 150 | ### **Bonding Pad Position** (Dimensions in µm, Typical) Fig 3. Bonding Pad Positions ### **Assembly and Handling Procedure** #### 1. Storage Dice should be stored in a dry nitrogen purged desiccators or equivalent. #### 2. ESD MMIC E-PHEMT amplifier dice are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be opened in clean room conditions at an appropriately grounded anti-static worksta tion. Devices need careful handling using correctly designed collets, vacuum pickup tips or sharp antistatic tweezers to deter ESD damage to dice. #### 3. Die Attach The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are DieMat DM6030HK-PT/H579 or Ablestik 84-1LMISR4. Apply sufficient epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total die periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. It is recommended to use antistatic die pick up tools only. #### 4. Wire Bonding Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the dice gold bond pads. Thermosonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1 mil diameter. Bonds must be made from the bond pads on the die to the package or substrate. All bond wires should be kept as short as low as reasonable to minimize performance degradation due to undesirable series inductance. ### **Assembly Diagram** ### **Recommended Wire Length, Typical** | Wire | Wire Length (mm) | Wire Loop Height (mm) | |----------------|------------------|-----------------------| | RF In | 1.90 | 0.50 | | RF-Out + DC In | 1.65 | 0.50 | | Ground 1 | 1.15 | 0.50 | | Ground 2 | 0.35 | 0.15 | | Additional Detailed Technica additional information is available on our d | | | | | | |---|---|--|--|--|--| | | Data Table | | | | | | Performance Data | Swept Graphs | | | | | | | S-Parameter (S2P Files) Data Set wit | th and without port extension(.zip file) | | | | | Case Style | Die | | | | | | | Quantity, Package | Model No. | | | | | | Small, Gel - Pak: 5,10,50,100 KGD* | | | | | | Die Ordering and packaging information | Medium [†] , Partial wafer: KGD*<1625
Large [†] , Full Wafer | PHA-101-DF+ | | | | | mormation | †Available upon request contact sales | s representative | | | | | | Refer to <u>AN-60-067</u> | | | | | | Environmental Ratings | ENV80 | | | | | ^{*}Known Good Dice ("KGD") means that the dice in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such dice fall within a predefined range. While DC testing is not definitive, it does help to provide a higher degree of confidence that dice are capable of meeting typical RF electrical parameters specified by Mini-Circuits. ### **ESD Rating**** Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001 #### **Additional Notes** - A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. - B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. - C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp - D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an "As is" basis, with all faults. - E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Dice (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bond ing and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Dice. - F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products. ^{**} Tested in industry standard SOT-89 package. # Typical Performance Data ### NOTE: Use PDF Bookmarks to view DATA at required conditions #### **Definitions:** Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse Isolation = -S12 (dB) Output Return Loss = -S22 (dB) TEST CONDITIONS: Vd = 9V, Id = 190.68 mA @ Temperature = +25degC | FREQ | Gain | Isolation | Input
Return
Loss | Output
Return
Loss | Stal | oility | IP-3
Output | 1dB
Comp.
Output | Noise
Figure | |-------|-------|-----------|-------------------------|--------------------------|------|---------|----------------|------------------------|-----------------| | (MHz) | (dB) | (dB) | (dB) | (dB) | K | Measure | (dBm) | (dBm) | (dB) | | 50 | 15.27 | 20.39 | 11.33 | 14.18 | 1.13 | 0.67 | 48.57 | 25.93 | 4.12 | | 100 | 15.49 | 20.63 | 12.58 | 12.60 | 1.14 | 0.63 | 45.82 | 26.49 | 4.04 | | 150 | 15.51 | 20.74 | 12.56 | 12.06 | 1.14 | 0.63 | 45.50 | 26.41 | 3.98 | | 200 | 15.52 | 20.77 | 12.55 | 11.88 | 1.14 | 0.62 | 45.27 | 26.63 | 3.89 | | 250 | 15.51 | 20.81 | 12.52 | 11.78 | 1.14 | 0.62 | 44.99 | 26.48 | 4.01 | | 300 | 15.50 | 20.85 | 12.47 | 11.71 | 1.15 | 0.63 | 44.46 | 26.66 | 4.04 | | 350 | 15.48 | 20.82 | 12.45 | 11.63 | 1.14 | 0.62 | 43.54 | 26.67 | 4.10 | | 400 | 15.46 | 20.84 | 12.39 | 11.58 | 1.15 | 0.63 | 43.35 | 26.45 | 4.08 | | 450 | 15.44 | 20.84 | 12.33 | 11.52 | 1.15 | 0.63 | 42.92 | 26.55 | 4.08 | | 500 | 15.42 | 20.87 | 12.26 | 11.43 | 1.15 | 0.63 | 42.77 | 26.47 | 4.12 | | 550 | 15.40 | 20.91 | 12.17 | 11.36 | 1.15 | 0.63 | 42.68 | 26.58 | 4.09 | | 600 | 15.38 | 20.89 | 12.16 | 11.31 | 1.15 | 0.63 | 42.55 | 26.39 | 4.10 | | 650 | 15.36 | 20.89 | 12.04 | 11.25 | 1.15 | 0.63 | 42.78 | 26.40 | 4.09 | | 700 | 15.33 | 20.93 | 12.00 | 11.22 | 1.16 | 0.63 | 43.22 | 26.53 | 4.10 | | 750 | 15.32 | 20.92 | 11.90 | 11.12 | 1.16 | 0.63 | 43.07 | 26.57 | 4.05 | | 800 | 15.30 | 20.97 | 11.81 | 11.02 | 1.16 | 0.64 | 43.31 | 26.55 | 4.03 | | 850 | 15.28 | 20.99 | 11.74 | 10.96 | 1.16 | 0.64 | 43.68 | 26.64 | 4.02 | | 1000 | 15.21 | 21.07 | 11.42 | 10.63 | 1.16 | 0.64 | 44.91 | 26.60 | 4.14 | | 1050 | 15.20 | 21.10 | 11.27 | 10.49 | 1.17 | 0.64 | 44.91 | 26.52 | 4.12 | | 1100 | 15.18 | 21.14 | 11.20 | 10.39 | 1.17 | 0.64 | 45.25 | 26.57 | 4.12 | | 1150 | 15.15 | 21.17 | 11.08 | 10.26 | 1.17 | 0.64 | 45.14 | 26.71 | 4.18 | | 1200 | 15.13 | 21.23 | 10.99 | 10.12 | 1.17 | 0.64 | 46.20 | 26.48 | 4.20 | | 1250 | 15.11 | 21.28 | 10.87 | 10.01 | 1.18 | 0.65 | 46.47 | 26.54 | 4.15 | | 1300 | 15.08 | 21.36 | 10.74 | 9.83 | 1.18 | 0.65 | 46.16 | 26.23 | 4.20 | | 1350 | 15.04 | 21.42 | 10.68 | 9.70 | 1.18 | 0.65 | 47.37 | 26.34 | 4.20 | | 1400 | 15.05 | 21.45 | 10.53 | 9.64 | 1.18 | 0.65 | 46.77 | 26.14 | 4.21 | | 1450 | 15.04 | 21.53 | 10.38 | 9.50 | 1.19 | 0.65 | 46.13 | 26.14 | 4.23 | | 1500 | 15.02 | 21.54 | 10.28 | 9.37 | 1.19 | 0.65 | 44.94 | 26.19 | 4.20 | | 1550 | 14.99 | 21.66 | 10.15 | 9.24 | 1.19 | 0.65 | 43.39 | 26.07 | 4.26 | | 1600 | 14.97 | 21.71 | 10.09 | 9.10 | 1.20 | 0.65 | 43.61 | 25.97 | 4.28 | | 1650 | 14.94 | 21.78 | 9.93 | 8.94 | 1.20 | 0.65 | 44.29 | 25.99 | 4.29 | | 1700 | 14.90 | 21.89 | 9.83 | 8.81 | 1.21 | 0.66 | 42.39 | 25.70 | 4.23 | | 1750 | 14.87 | 22.02 | 9.75 | 8.70 | 1.22 | 0.66 | 41.46 | 25.76 | 4.36 | | 1800 | 14.81 | 22.13 | 9.61 | 8.57 | 1.23 | 0.67 | 41.62 | 25.63 | 4.32 | | 1850 | 14.76 | 22.21 | 9.56 | 8.42 | 1.23 | 0.67 | 41.39 | 25.52 | 4.52 | | 1900 | 14.70 | 22.38 | 9.39 | 8.28 | 1.25 | 0.67 | 41.32 | 25.48 | 4.44 | | 1950 | 14.62 | 22.53 | 9.30 | 8.13 | 1.26 | 0.68 | 41.07 | 25.42 | 4.47 | | 2000 | 14.50 | 22.71 | 9.23 | 8.00 | 1.28 | 0.69 | 40.75 | 25.27 | 4.50 | Note: Test data of die packaged in industry standard SOT-89 Package # Typical Performance Data #### **Definitions:** Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse Isolation = -S12 (dB) Output Return Loss = -S22 (dB) TEST CONDITIONS: Vd = 8.5V, Id =177.90 mA @ Temperature = +25degC | FREQ | Gain | Isolation | Input
Return
Loss | Output
Return
Loss | Stal | bility | IP-3
Output | 1dB
Comp.
Output | Noise
Figure | |-------|-------|-----------|-------------------------|--------------------------|------|---------|----------------|------------------------|-----------------| | (MHz) | (dB) | (dB) | (dB) | (dB) | K | Measure | (dBm) | (dBm) | (dB) | | 50 | 15.25 | 20.62 | 11.33 | 14.22 | 1.15 | 0.69 | 48.81 | 25.41 | 4.02 | | 100 | 15.47 | 20.66 | 12.53 | 12.62 | 1.14 | 0.63 | 45.09 | 25.95 | 3.98 | | 150 | 15.49 | 20.75 | 12.53 | 12.07 | 1.14 | 0.63 | 45.04 | 25.86 | 3.89 | | 200 | 15.50 | 20.77 | 12.50 | 11.87 | 1.14 | 0.63 | 44.50 | 26.09 | 3.84 | | 250 | 15.49 | 20.83 | 12.47 | 11.77 | 1.15 | 0.63 | 43.32 | 25.94 | 3.95 | | 300 | 15.47 | 20.81 | 12.41 | 11.68 | 1.14 | 0.63 | 43.46 | 26.14 | 3.96 | | 350 | 15.46 | 20.85 | 12.40 | 11.62 | 1.15 | 0.63 | 41.84 | 26.13 | 4.03 | | 400 | 15.43 | 20.86 | 12.32 | 11.57 | 1.15 | 0.63 | 41.74 | 25.91 | 4.04 | | 450 | 15.42 | 20.88 | 12.29 | 11.53 | 1.15 | 0.63 | 41.61 | 26.01 | 4.04 | | 500 | 15.40 | 20.88 | 12.22 | 11.44 | 1.15 | 0.63 | 41.10 | 25.95 | 4.04 | | 550 | 15.38 | 20.87 | 12.12 | 11.37 | 1.15 | 0.63 | 41.94 | 26.06 | 4.03 | | 600 | 15.36 | 20.90 | 12.11 | 11.33 | 1.15 | 0.63 | 41.82 | 25.85 | 4.03 | | 650 | 15.33 | 20.91 | 12.01 | 11.28 | 1.16 | 0.63 | 42.24 | 25.85 | 4.02 | | 700 | 15.31 | 20.91 | 11.97 | 11.22 | 1.16 | 0.63 | 42.61 | 26.02 | 4.03 | | 750 | 15.30 | 20.92 | 11.87 | 11.14 | 1.16 | 0.64 | 42.80 | 26.05 | 4.00 | | 800 | 15.27 | 20.95 | 11.76 | 11.05 | 1.16 | 0.64 | 43.31 | 26.04 | 3.94 | | 850 | 15.26 | 20.96 | 11.71 | 10.97 | 1.16 | 0.64 | 44.23 | 26.13 | 3.97 | | 1000 | 15.19 | 21.06 | 11.38 | 10.65 | 1.17 | 0.64 | 46.07 | 26.05 | 4.09 | | 1050 | 15.17 | 21.10 | 11.24 | 10.51 | 1.17 | 0.64 | 46.35 | 26.00 | 4.11 | | 1100 | 15.15 | 21.14 | 11.15 | 10.39 | 1.17 | 0.64 | 47.37 | 26.03 | 4.06 | | 1150 | 15.13 | 21.19 | 11.05 | 10.27 | 1.17 | 0.65 | 45.95 | 26.17 | 4.10 | | 1200 | 15.10 | 21.24 | 10.95 | 10.13 | 1.18 | 0.65 | 46.58 | 25.94 | 4.11 | | 1250 | 15.08 | 21.31 | 10.83 | 10.01 | 1.18 | 0.65 | 45.71 | 26.03 | 4.10 | | 1300 | 15.05 | 21.36 | 10.70 | 9.83 | 1.18 | 0.65 | 44.62 | 25.73 | 4.15 | | 1350 | 15.01 | 21.42 | 10.64 | 9.70 | 1.19 | 0.65 | 44.92 | 25.84 | 4.17 | | 1400 | 15.02 | 21.46 | 10.47 | 9.64 | 1.19 | 0.65 | 44.68 | 25.64 | 4.15 | | 1450 | 15.01 | 21.50 | 10.34 | 9.50 | 1.19 | 0.65 | 44.13 | 25.66 | 4.14 | | 1500 | 14.99 | 21.56 | 10.24 | 9.37 | 1.19 | 0.65 | 43.45 | 25.69 | 4.14 | | 1550 | 14.95 | 21.66 | 10.11 | 9.24 | 1.20 | 0.66 | 41.94 | 25.60 | 4.21 | | 1600 | 14.93 | 21.76 | 10.06 | 9.12 | 1.20 | 0.66 | 41.71 | 25.51 | 4.20 | | 1650 | 14.90 | 21.83 | 9.89 | 8.95 | 1.21 | 0.66 | 42.36 | 25.52 | 4.22 | | 1700 | 14.86 | 21.92 | 9.80 | 8.81 | 1.21 | 0.66 | 41.21 | 25.23 | 4.23 | | 1750 | 14.83 | 22.04 | 9.72 | 8.71 | 1.22 | 0.67 | 40.45 | 25.30 | 4.31 | | 1800 | 14.77 | 22.17 | 9.58 | 8.58 | 1.23 | 0.67 | 40.30 | 25.17 | 4.26 | | 1850 | 14.72 | 22.27 | 9.53 | 8.44 | 1.24 | 0.67 | 40.19 | 25.06 | 4.44 | | 1900 | 14.65 | 22.42 | 9.36 | 8.29 | 1.25 | 0.68 | 40.27 | 25.01 | 4.34 | | 1950 | 14.57 | 22.58 | 9.28 | 8.15 | 1.27 | 0.68 | 39.87 | 24.96 | 4.40 | | 2000 | 14.45 | 22.73 | 9.22 | 8.03 | 1.29 | 0.69 | 39.83 | 24.82 | 4.45 | Note: Test data of die packaged in industry standard SOT-89 Package # Typical Performance Data #### **Definitions:** Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse Isolation = -S12 (dB) Output Return Loss = -S22 (dB) TEST CONDITIONS: Vd = 9.5V, Id = 202.27 mA @ Temperature = +25degC | FREQ | Gain | Isolation | Input
Return
Loss | Output
Return
Loss | Stal | oility | IP-3
Output | 1dB
Comp.
Output | Noise
Figure | |-------|-------|-----------|-------------------------|--------------------------|------|---------|----------------|------------------------|-----------------| | (MHz) | (dB) | (dB) | (dB) | (dB) | K | Measure | (dBm) | (dBm) | (dB) | | 50 | 15.19 | 20.38 | 11.36 | 14.12 | 1.14 | 0.67 | 44.16 | 26.43 | 4.37 | | 100 | 15.41 | 20.62 | 12.60 | 12.52 | 1.14 | 0.63 | 44.18 | 26.99 | 4.30 | | 150 | 15.43 | 20.72 | 12.59 | 11.98 | 1.14 | 0.63 | 44.34 | 26.91 | 4.22 | | 200 | 15.43 | 20.79 | 12.55 | 11.78 | 1.15 | 0.63 | 43.98 | 27.11 | 4.15 | | 250 | 15.43 | 20.78 | 12.53 | 11.66 | 1.15 | 0.63 | 43.44 | 26.97 | 4.25 | | 300 | 15.41 | 20.81 | 12.49 | 11.59 | 1.15 | 0.63 | 42.89 | 27.11 | 4.30 | | 350 | 15.40 | 20.81 | 12.46 | 11.53 | 1.15 | 0.63 | 42.50 | 27.17 | 4.33 | | 400 | 15.37 | 20.82 | 12.39 | 11.47 | 1.15 | 0.63 | 42.34 | 26.93 | 4.33 | | 450 | 15.36 | 20.83 | 12.34 | 11.42 | 1.15 | 0.63 | 42.12 | 27.01 | 4.33 | | 500 | 15.34 | 20.88 | 12.29 | 11.35 | 1.16 | 0.63 | 42.17 | 26.96 | 4.39 | | 550 | 15.31 | 20.84 | 12.19 | 11.26 | 1.15 | 0.63 | 41.90 | 27.05 | 4.36 | | 600 | 15.30 | 20.88 | 12.18 | 11.21 | 1.16 | 0.63 | 42.00 | 26.85 | 4.33 | | 650 | 15.27 | 20.90 | 12.07 | 11.17 | 1.16 | 0.63 | 41.93 | 26.87 | 4.35 | | 700 | 15.25 | 20.91 | 12.04 | 11.12 | 1.16 | 0.64 | 42.07 | 27.03 | 4.33 | | 750 | 15.24 | 20.94 | 11.94 | 11.01 | 1.16 | 0.64 | 42.08 | 27.06 | 4.28 | | 800 | 15.21 | 20.94 | 11.83 | 10.93 | 1.16 | 0.64 | 42.01 | 27.02 | 4.26 | | 850 | 15.20 | 20.96 | 11.78 | 10.86 | 1.16 | 0.64 | 42.24 | 27.11 | 4.29 | | 1000 | 15.13 | 21.05 | 11.43 | 10.53 | 1.17 | 0.64 | 42.94 | 27.07 | 4.37 | | 1050 | 15.11 | 21.10 | 11.30 | 10.39 | 1.17 | 0.64 | 42.74 | 27.00 | 4.37 | | 1100 | 15.09 | 21.10 | 11.23 | 10.28 | 1.17 | 0.64 | 42.94 | 27.04 | 4.38 | | 1150 | 15.06 | 21.14 | 11.10 | 10.15 | 1.17 | 0.64 | 42.71 | 27.17 | 4.44 | | 1200 | 15.04 | 21.23 | 11.00 | 10.01 | 1.18 | 0.65 | 43.03 | 26.96 | 4.42 | | 1250 | 15.02 | 21.25 | 10.88 | 9.89 | 1.18 | 0.64 | 43.27 | 27.00 | 4.43 | | 1300 | 14.99 | 21.32 | 10.75 | 9.72 | 1.18 | 0.65 | 43.24 | 26.69 | 4.47 | | 1350 | 14.95 | 21.41 | 10.68 | 9.60 | 1.19 | 0.65 | 43.95 | 26.78 | 4.47 | | 1400 | 14.96 | 21.45 | 10.52 | 9.53 | 1.19 | 0.65 | 44.00 | 26.57 | 4.46 | | 1450 | 14.95 | 21.49 | 10.38 | 9.39 | 1.19 | 0.65 | 43.42 | 26.58 | 4.48 | | 1500 | 14.93 | 21.54 | 10.27 | 9.26 | 1.19 | 0.65 | 43.18 | 26.61 | 4.46 | | 1550 | 14.90 | 21.63 | 10.14 | 9.13 | 1.20 | 0.65 | 42.48 | 26.49 | 4.51 | | 1600 | 14.87 | 21.68 | 10.08 | 8.99 | 1.20 | 0.65 | 43.05 | 26.41 | 4.50 | | 1650 | 14.84 | 21.78 | 9.91 | 8.82 | 1.20 | 0.65 | 43.16 | 26.41 | 4.56 | | 1700 | 14.81 | 21.88 | 9.81 | 8.69 | 1.21 | 0.66 | 41.62 | 26.11 | 4.51 | | 1750 | 14.77 | 21.97 | 9.73 | 8.58 | 1.22 | 0.66 | 40.99 | 26.18 | 4.63 | | 1800 | 14.71 | 22.12 | 9.59 | 8.45 | 1.23 | 0.67 | 41.35 | 26.04 | 4.61 | | 1850 | 14.67 | 22.24 | 9.54 | 8.31 | 1.24 | 0.67 | 41.32 | 25.94 | 4.77 | | 1900 | 14.60 | 22.39 | 9.36 | 8.17 | 1.25 | 0.67 | 40.98 | 25.90 | 4.68 | | 1950 | 14.52 | 22.54 | 9.28 | 8.01 | 1.26 | 0.68 | 41.01 | 25.84 | 4.74 | | 2000 | 14.41 | 22.70 | 9.23 | 7.90 | 1.29 | 0.69 | 40.53 | 25.66 | 4.77 | Note: Test data of die packaged in industry standard SOT-89 Package # Typical Performance Curves ---- 9.5V 2000 3.0 2.0 250 Note: Test data of die packaged in industry standard SOT-89 Package 6.0 5.0 4.5 3.5 All Mini-Circuits products are manufactured under exacting quality assurance and control standards, and are capable of meeting published specifications after being subjected to any or all of the following physical and environmental test. | Specification | Test/Inspection Condition | Reference/Spec | |--------------------------------|---|---| | Operating Temperature | -40° to 85° C or -45° to 85° C or -55° to 105° C or -40° to 105° C or -40° to 95° C Ambient Environment | Individual Model Data Sheet | | Storage Temperature | -55° to 100° C or -65° to 150°
Ambient Environment | Individual Model Data Sheet | | HTOL | 1000 hours at 125°C | MIL-STD-883, Method 1005, Condition B | | Thermal Shock | -55° to 100°C, 100 cycles | MIL-STD-202, Method 107, Condition A-3, except +100°C | | Mechanical Shock | 1.5Kg, 0.5 ms, 5 shock pulses, Y1 direction only | MIL-STD-883, Method 2002, Condition B, except Y1 direction only | | Vibration (Variable Frequency) | 50g peak | MIL-STD-883, Method 2007, Condition B | | Autoclave | 15 psig, 100% RH, 121°C, 96 hours | JESD22-A102, Condition C | | HAST | 130°C, 85% RH, 96 hours | JESD22-A110 | | Solderability | 10X Magnification | J-STD-002, Para 4.2.5, Test S, 95% Coverage | | Solder Reflow Heat | Sn-Pb Eutetic Process: 240°C peak
Pb-Free Process: 260°C peak | J-STD-020, Table 4-1, 4-2 and 5-2; Figure 5-1 | | Moisture Sensitivity: Level 1 | Bake at 125°C for 24 hours
Soak at 85°C/85% RH for 168 hours, Reflow 3 cycles at
260°C peak | J-STD-020 | ENV08T1 Rev: D 12/16/24 DCO-1621 File: ENV08T1.pdf This document and its contents are the property of Mini-Circuits. ### **Environmental Specifications** ### ENV08T1 All Mini-Circuits products are manufactured under exacting quality assurance and control standards, and are capable of meeting published specifications after being subjected to any or all of the following physical and environmental test. | Specification | Test/Inspection Condition | Reference/Spec | |--------------------------------|--|-------------------------| | Marking Resistance to Solvents | Isopropyl alcohol + mineral spirits at 25°C; terpene defluxer at 25°C; distilled water + proylene glycol monomethyl ether + monoethanolamine at 63°C to 70°C | MIL-STD-202, Method 215 |