REFLECTIONLESS FILTERS

 50Ω DC to 21 GHz

The Big Deal

- •High Stopband rejection, up to 50 dB
- Patented design terminates stopband signals
- •Pass band cut-off up to 11 GHz
- •Stop band up to 26 GHz
- Excellent repeatability through IPD* process

Product Overview

Mini-Circuits' *X-Series* of reflectionless filters now includes 2- and 3-section models, giving you ultra-high rejection in the stopband – up to 50 dB! Reflectionless filters employ a patented filter topology which absorbs and terminates stopband signals internally rather than reflecting them back to the source. This new capability enables unique applications for filter circuits beyond those suited to traditional approaches. Traditional filters are reflective in the stopband, sending signals back to the source at 100% power. These reflections interact with neighboring components and often result in intermodulation and other interferences. By eliminating stopband reflections, reflectionless filters can readily be paired with sensitive devices and used in applications that otherwise require circuits such as isolation amplifiers or attenuators.

Key Features	Advantages					
Easy integration with sensitive reflective components, e.g. mixers, multipliers	Reflectionless filters absorb unwanted signals falling in filter stopband, preventing reflections back to the source. This reduces generation of additional unwanted signals without the need for extra components like attenuators, improving system dynamic range and saving board space.					
High stopband rejection, up to 50 dB	Ideal for applications where suppression of strong spurious signals and intermodulation products is needed.					
Enables stable integration of wideband amplifiers	Because reflectionless filters maintain good impedance in the stopband; they can be integrated with high gain, wideband amplifiers without the risk of creating instabilities in these out of band regions.					
Cascadable	Reflectionless filters can be cascaded in multiple sections to provide sharper and higher attenuation, while also preventing any standing waves that could affect passband signals. Low & highpass filters can be cascaded to realize bandpass filters.					
Excellent power handling in a tiny surface mount device up to 7W in passband	High power handling extends the usability of these filters to the transmit path for inter-stage filtering.					
Small size, 3x3mm/ 4x4 mm/ 5x5mm QFN	Allows replacement of filter/attenuator pairs with a single reflectionless filter, saving board space.					
Excellent repeatability of RF performance	Through semiconductor IPD process, X-series filters are inherently repeatable for large volume production.					
Excellent stability over temperature	With ±0.3 dB variation over temperature ideal for use in wide temperature range applications without the need for additional temperature compensation.					
Operating temperature up to 105°C	Suitable for operation close to high power components.					

^{*}IPD - Integrated Passive Device, is a GaAs semiconductor process

Reflectionless High Pass Filter

XHF-292M+

50Ω 2900 to 8700 MHz

Features

- Match to 50Ω in the stop band, eliminates undesired reflections
- Cascadable
- Good stopband rejection, 36 dB typ.
- Temperature stable, up to 105°C
- Small size, 4 x 4 mm
- Protected by US Patents 8,392,495; 9,705,467, additional patent pending
- Protected by China Patent 201080014266.1
- Protected by Taiwan Patent I581494

+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Applications

- Mobile (LTE B42/B43)
- ISM applications
- Satellite
- WiFi WiMAX

General Description

Mini-Circuits' XHF-292M+ two-section reflectionless filter employs a novel filter topology which absorbs and terminates stop band signals internally rather than reflecting them back to the source. This new capability enables unique applications for filter circuits beyond those suited to traditional approaches. Traditional filters are reflective in the stop band, sending signals back to the source at 100% of the power level. These reflections interact with neighboring components and often result in inter-modulation and other interferences. Reflectionless filters eliminate stop band reflections, allowing them to be paired with sensitive devices and used in applications that otherwise require circuits such as isolation amplifiers or attenuators.

simplified schematic and pad description

Function	Pad Number	Description
RF-IN	3	RF Input Pad
RF-OUT	16	RF Output Pad
GND	2,4,15,17 & paddle	Connected to ground
NC (GND Externally)	1, 5-14,18-24	No internal connection

Electrical Specifications¹ at 25°C

Pa	Parameter		Frequency (MHz)	Min.	Тур.	Max.	Unit
	Rejection	DC-F1	DC - 1950	25	36	_	dB
Stop Band	Frequency Cut-off	F2	2400	_	3.0	_	dB
	VSWR	DC-F1	DC - 1950	_	1.2	_	:1
	Insertion Loss	F3-F5	2900 - 8700	_	0.7	1.7	dB
Pass Band	VSWR	F3-F4	2900 - 7100	_	1.2	_	:1
	*******	F4-F5	7100 - 8700	_	1.5	_	:1

¹ Measured on Mini-Circuits Characterization Test Board TB-952-292M+

Absolute Maximum Ratings⁴

Parameter	Ratings			
Operating Temperature	-55°C to +105°C			
Storage Temperature	-65°C to +150°C			
RF Power Input, Passband (F3-F5) ²	32 dBm at 25°C			
RF Power Input, Stopband (DC-F3)3	35 dBm at 25°C			

SPECIFICATION DEFINITION

ESD rating

Human body model (HBM): Class 2 (Pass 2000 V) in accordance with ANSI/ESD 5.1-2001

Typical Performance Data at 25°C

Frequency (MHz)	Insertion Loss (dB)	VSWR (:1)
10	57.49	1.32
100	43.57	1.33
500	28.49	1.39
1000	41.10	1.13
1500	42.55	1.30
1950	33.83	1.29
2000	22.54	1.29
2200	6.00	1.13
2400	2.94	1.06
2500	2.33	1.04
2800	1.48	1.16
2900	1.34	1.19
3000	1.22	1.21
4500	0.64	1.23
5500	0.54	1.13
6500	0.47	1.12
7000	0.49	1.26
7100	0.51	1.30
8000	0.65	1.61
8700	0.79	1.86

² Passband rating derates linearly to 29 dBm at 105°C ambient ³ Stopband rating derates linearly to 32 dBm at 105°C ambient ⁴ Permanent damage may occur if any of these limits are exceeded.

Outline Drawing

PCB Land Pattern

Suggested Layout, Tolerance to be within ±.002

Outline Dimensions (inch)

J	Н	G	F	Е	D	С	В	Α
.016		.009	.104	.104	.008	.039	.157	.157
0.41		0.23	2.64	2.64	0.20	1.0	4.0	4.0
wt		R	Q	Р	N	М	L	K
grams		.102	.020	.012	.102	.166	.166	.020

Product Marking

Demo Board MCL P/N: TB-952-292M+ Suggested PCB Layout: PL-519

- 1. TRACE WIDTH & GAP ARE SHOWN FOR ROGERS RO4350B WITH DIELECTRIC THICKNESS .010" ± .001"; COPPER: 1/2 OZ. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED. 2. BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.
- DENOTES PCB COPPER LAYOUT WITH SMOBC (SOLDER MASK OVER BARE COPPER)

DENOTES COPPER LAND PATTERN FREE OF SOLDER MASK

Tape & Reel Packaging, F68

DEVICE ORIENTATION IN T&R

DIRECTION OF FEED

Tape Width, mm				per Reel note
12	8	7	Small quantity standard	20 50 100 200 500
		7	Standard	1000
		13	Standard	2000 4000

Lead Finish: Matte-Tin

Application Circuit Example

Pairing mixers with reflectionless filters to improve system dynamic range

Test block diagram: IF output reflection spectrum with single input frequency

Figure 1. IF output reflection spectrum without filter

Figure 2. IF output reflection spectrum with conventional filter

An application circuit was assembled to measure the IF reflection spectrum at the output of a mixer when the mixer was paired with a conventional filter versus a reflectionless filter.

While the conventional filter reduces the reflections present when the mixer is used alone (no filter), the reflectionless filter virtually eliminates those reflections altogether.

The reflected signal at marker 1 in the figures above exhibits a reduction of more than 20 dB from -28.7 dBm to -50.3 dBm when the reflectionless filter is used as compared to the conventional filter, thus eliminating unwanted spurious mixing products and improving-system dynamic range.

For more information, refer to application note AN-75-007

Figure 3. IF output reflection spectrum with reflectionless filter

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

MMIC Reflectionless High Pass Filter

Typical Performance Data

FREQ.	IN	ISERTION LOS	ss	INP	INPUT RETURN LOSS			PUT RETURN I	Loss
		(dB)			(dB)			(dB)	
(MHz)	@-55°C	@25°C	@+105°C	@-55°C	@+25°C	@+105°C	@-55°C	@+25°C	@+105°C
10	59.91	57.49	55.60	20.60	18.14	16.59	19.08	17.20	15.71
50	54.38	51.60	49.45	20.18	18.04	16.66	18.73	17.14	15.78
100	43.88	43.65	43.23	19.60	18.02	16.81	18.22	17.04	15.90
200	33.97	34.28	34.45	19.22	17.66	16.39	17.91	16.69	15.59
250	31.24	31.65	31.96	18.88	17.35	16.15	17.65	16.49	15.38
300	29.38	29.87	30.25	18.31	17.10	16.01	17.21	16.26	15.27
400	27.54	28.16	28.69	17.38	16.58	15.80	16.47	15.91	15.22
450	27.40	28.07	28.65	17.14	16.43	15.75	16.35	15.82	15.28
500	27.76	28.50	29.12	16.99	16.37	15.73	16.32	15.82	15.32
600	30.11	30.94	31.65	17.04	16.57	15.91	16.49	16.15	15.64
700	35.38	36.21	36.88	17.42	17.26	16.87	17.12	17.03	16.98
1000	41.85	41.10	40.46	23.89	24.20	23.90	26.29	26.31	26.10
1400	36.85	37.34	37.46	19.43	19.68	19.77	17.92	18.38	18.64
1500	44.05	42.55	41.15	18.36	18.54	18.51	17.39	17.73	17.71
1950	39.81	33.83	30.35	17.47	18.19	19.15	17.08	18.01	18.88
2400	2.43	2.94	3.37	30.34	32.18	37.81	28.48	30.45	33.32
2900	0.97	1.34	1.64	20.76	21.42	23.41	20.72	21.55	22.84
3500	0.55	0.90	1.18	19.80	18.93	20.02	19.56	19.01	19.44
4000	0.39	0.74	1.04	20.16	18.86	19.29	19.63	19.03	19.04
4500	0.29	0.64	0.98	20.94	19.72	18.58	20.78	19.97	18.56
5000	0.25	0.60	0.94	19.89	21.13	20.92	19.01	21.60	21.05
5500	0.21	0.54	0.87	19.73	24.27	28.16	19.72	24.91	28.30
6000	0.12	0.48	0.84	25.27	31.05	29.77	25.43	34.69	35.32
6500 7100	0.08	0.47	0.85	26.81 15.67	24.99	23.15	27.54 15.72	25.34	21.60 17.32
	0.14	0.51	0.92		17.76	17.75	13.72	17.97	14.56
7500 8000	0.19 0.22	0.56 0.65	1.00 1.16	13.82 12.37	15.01 12.62	14.55 12.10	13.62	15.26 12.86	12.37
8700	0.22	0.03	1.57	13.13	10.44	8.39	13.16	10.68	8.47
9000	0.17	0.79	1.66	12.30	9.74	8.07	12.50	9.97	8.14
9500	0.19	0.88	1.68	9.26	8.85	8.29	9.23	9.01	8.46
10000	0.40	1.12	1.75	7.45	8.10	8.17	7.69	8.22	8.10
10500	0.94	1.12	1.56	6.45	7.49	10.10	6.22	7.55	10.14
11000	1.33	1.45	1.71	5.13	6.89	9.05	5.33	6.90	8.94
11500	1.03	1.66	2.03	6.28	6.32	7.80	6.06	6.26	7.91
12000	1.15	1.89	2.34	5.68	5.73	6.68	5.76	5.66	6.93
12500	1.20	2.10	3.16	5.48	5.32	4.81	5.43	5.21	4.96
13000	1.45	2.23	3.13	4.68	5.05	5.16	5.00	4.98	5.25
13500	1.79	2.24	3.36	4.21	5.08	4.63	4.12	5.02	4.62
14000	1.76	2.11	2.99	4.14	5.48	5.76	4.50	5.63	6.32
14500	2.82	3.25	4.22	5.80	7.06	6.73	6.46	6.76	6.03
15000	2.11	2.03	2.62	3.88	5.90	7.36	3.95	5.97	7.77
15500	1.17	1.52	2.42	5.80	7.08	6.52	5.66	7.24	6.73
16000	0.64	1.22	1.79	7.88	8.43	12.37	7.74	8.68	12.98
16500	0.59	1.03	1.88	7.66	9.89	9.89	7.91	10.22	9.75
17000	0.06	0.93	1.66	14.37	11.24	15.72	16.02	11.64	14.58
17500	0.07	0.86	1.96	12.13	12.92	10.77	12.34	13.36	10.92
18000	0.02	0.82	1.74	16.33	15.11	15.18	16.94	15.90	17.43
18500	0.44	0.80	2.21	7.37	18.72	10.66	7.46	20.44	12.93
19000	0.16	0.81	1.85	14.29	21.15	19.35	14.38	55.80	23.62
19500	0.14	0.93	2.32	21.10	16.68	10.11	21.34	19.12	11.40
20000	0.45	1.17	2.68	11.94	11.94	9.67	12.36	12.84	9.91
20500	1.44	1.56	2.77	5.18	8.83	8.56	5.49	9.23	9.22
21000	1.68	2.08	3.14	4.73	6.63	10.55	5.05	6.93	9.52
21500 22000	2.18 2.51	2.77 3.45	4.06 4.72	3.78 3.47	5.04 4.10	5.62 5.73	3.65 3.41	5.27 4.26	5.79 5.95
22500	2.51	3.45 4.23	4.72 5.61	3.47	3.38	3.93	3.41	3.49	5.95 4.34
23000	2.58	4.23 5.04	6.30	3.56	2.81	3.93	3.06	2.94	4.34
23500	3.53	5.88	7.60	2.60	2.43	2.96	2.77	2.94	3.54
24000	4.97	6.74	8.97	1.71	2.43	2.66	1.45	2.11	2.14
24500	6.79	7.63	10.59	0.89	1.84	1.67	1.43	1.84	2.14
25000	8.90	8.59	11.04	0.30	1.66	2.75	0.26	1.67	2.14
25500	10.24	9.57	11.86	0.37	1.61	2.89	0.23	1.61	2.14
26000	11.18	10.84	12.72	0.19	1.66	3.26	0.03	1.72	2.71

Typical Performance Curves

DG1847

Outline Dimensions

PCB Land Pattern

SUGGESTED LAYOUT,
TOLERANCE TO BE WITHIN ±.002

Weight: .04 Grams

Dimensions are in inches (mm). Tolerances: 2 Pl. ± .01; 3 Pl. ± .005

Notes:

1. Case material: Plastic.

2. Termination finish:

For RoHS Case Styles: Tin-Silver alloy plate over Nickel barrier or Matte-Tin.

All models, (+) suffix. See model Data sheet.

For RoHS-5 Case Styles: Tin-Lead plate. All models, no (+) suffix.

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site

The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

Tape & Reel Packaging TR-F68

DEVICE ORIENTATION IN T&R

DIRECTION OF FEED

Tape Width, mm	Device Cavity Pitch, mm	Reel Size, Devices per Reel inches see note		
12	8	7	Small quantity standard	20 50 100 200 500
		7	Standard	1000
		13	Standard	2000 3000 4000

Mini-Circuits carrier tape materials provide protection from ESD (Electro-Static Discharge) during handling and transportation. Tapes are static dissipative and comply with industry standards EIA-481/EIA-541.

Go to: www.minicircuits.com/pages/pdfs/tape.pdf

Mini-Circuits ISO 9001 & ISO 14001 Certified

THIRD ANGLE PROJECTION

		REVISIONS			
REV	ECN No.	DESCRIPTION	DATE	DR	AUTH
OR	M162496	NEW RELEASE	06/15/17	GF	RS

SUGGESTED MOUNTING CONFIGURATION FOR DG1847 CASE STYLE, "24FL01" PIN CONNECTION

NOTES:

- 1. TRACE WIDTH & GAP ARE SHOWN FOR ROGERS RO4350B WITH DIELECTRIC THICKNESS .010" ± .001"; COPPER: 1/2 OZ. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.
- 2. BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.

DENOTES PCB COPPER LAYOUT WITH SMOBC (SOLDER MASK OVER BARE COPPER)

DENOTES COPPER LAND PATTERN FREE OF SOLDER MASK

	INITIALS	DATE			. ^	. •	• 4 ®		
DRAWN	GF	06/14/17		\sqcup Mini	ı — C	ircu	its	13 Neptu	ne Avenue
CHECKED	IL	06/15/17		Г				brooklyn	N1 11235
APPROVED	RS	06/15/17							
] PI	. 24FL	01.	DG184	47. '	TB-	952+
Circuits ®				-,	,		,		
), IN WRITING, T , MINI-CIRCUITS REPRODUCTION R), DUPLICATED (O ITS VENDORS, RESERVES ALL EIGHTS THERETO. OR DISCLOSED TO	VENDEE PROPRIETARY ANY OUTSIDE	SIZE A	code ident 15542	DRAWING		-519		REV:
			FILE: C	8PL519	SCALE:	10:1	SHEET:	1	OF 1
	DRAWN CHECKED APPROVED Circuits ® RE THE PROPER , IN WRITING, T , MINI-CIRCUITS EEPRODUCTION R EEPRODUCTION C LUT WRITTEN PER	DRAWN GF CHECKED IL APPROVED RS CIrcuits ® CIrcuits ® CIRCUITS RESERVES ALL EXPRODUCTION RIGHTS THERETO. DUPLICATED OR DISCLOSED TO UT WRITTEN PERMISSION OF MINI-	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 CIrcuits ® RE THE PROPERTY OF MINI-CIRCUITS. , IN WRITING, TO ITS VENDORS, VENDEE , MINI-CIRCUITS RESERVES ALL PROPRIETARY EPPRODUCTION RIGHTS THERETO. EPPRODUCTION RIGHTS THERETO. DUPLICATED OR DISCLOSED TO ANY OUTSIDE UT WRITTEN PERMISSION OF MINI-CIRCUITS.	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 CIrcuits ® RE THE PROPERTY OF MINI-CIRCUITS. IN WRITING, TO ITS VENDORS, VENDEE IN MINI-CIRCUITS RESERVES ALL PROPRIETARY REPRODUCTION RIGHTS THERETO. LIT WRITTEN PERMISSION OF MINI-CIRCUITS. FILE: C	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 Circuits ® RE THE PROPERTY OF MINI-CIRCUITS. , IN WRITING, TO ITS VENDORS, VENDEE , MINI-CIRCUITS RESERVES ALL PROPRIETARY REPRODUCTION RIGHTS THERETO. A 15542 UT WRITTEN PERMISSION OF MINI-CIRCUITS. FILE: ORDI 5.10	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 Circuits ® RE THE PROPERTY OF MINI-CIRCUITS. IN WRITING, TO ITS VENDORS, VENDEE IMINI-CIRCUITS RESERVES ALL PROPRIETARY REPRODUCTION RIGHTS THERETO. IN UNRITING TO ITS VENDORS, VENDEE IN UNRITING TO ITS VENDORS FILE: ORDIT 5.10 SCALE:	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 Circuits ® RE THE PROPERTY OF MINI-CIRCUITS. IN WRITING, TO ITS VENDORS, VENDEE; MINI-CIRCUITS RESERVES ALL PROPRIETARY REPRODUCTION RIGHTS THERETO. IN WRITING TO ITS VENDORS, VENDEE; MINI-CIRCUITS RESERVES ALL PROPRIETARY REPRODUCTION RIGHTS THERETO. DRAWING NO: 98-PL FILE: 08DI 510 SCALE: 10.1	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 PL, 24FL01, DG1847, Circuits ® RE THE PROPERTY OF MINI-CIRCUITS. IN WRITING, TO ITS VENDORS, VENDEE IN WRITING, TO ITS VENDORS, VENDEE IN WRITING RESERVES ALL PROPRIETARY REPRODUCTION RIGHTS THERETO. IN WRITING PERMISSION OF MINI-CIRCUITS. FILE: QRD1510 SCALE: 10.1 SHEET:	DRAWN GF 06/14/17 CHECKED IL 06/15/17 APPROVED RS 06/15/17 PL, 24FL01, DG1847, TB- Circuits ® RE THE PROPERTY OF MINI-CIRCUITS. IN WRITING, TO ITS VENDORS, VENDEE IN WRITING, TO ITS VENDORS, VENDEE IN WRITING, TO ITS VENDORS, VENDEE IN WRITING RIGHTS THERETO. IN UNRITING PERMISSION OF MINI-CIRCUITS. FILE: ORDI 510 SCALE: 10.1 SHEET: 1

Evaluation Board and Circuit

TB-952-292M+

PINS 1,5-14,18-24 - NOT CONNECTED.

Schematic Diagram

Notes:

- 1. 50 Ohm SMA Female connectors.
- 2. PCB Material: R04350 or equivalent, Dielectric Constant=3.5, Thickness=.010 inch.

ENV82

All Mini-Circuits products are manufactured under exacting quality assurance and control standards, and are capable of meeting published specifications after being subjected to any or all of the following physical and environmental test.

Test/Inspection Condition	Reference/Spec
-55° to 105°C Ambient Environment	Individual Model Data Sheet
-65° to 150° C Ambient Environment	Individual Model Data Sheet
15 psig, 100% RH, 121°C, 96 hours	JESD22-A102-C, Condition C
-65° to 150°C, 100 cycles	JESD22-A104
85°C/ 85% RH, 168 hours	JESD22-113
Sn-Pb Eutetic Process: 240°C peak Pb-Free Process: 260°C peak	J-STD-020, Table 4-1, 4-2 and 5-2; Figure 5-1
Bake at 125°C for 24 hours Soak at 85°C/85% RH for 168 hours, Reflow 3 cycles at 240°C peak (Non-RoHS) or 260°C (RoHS)	J-STD-020C
10X magnification, 95% coverage	JESD22-B102, Method 1: Dip and Look Test
Isopropyl alcohol + mineral spirits at 25°C; terpene defluxer at 25°C; distilled water + proylene glycol monomethyl ether + monoethanolamine at 63°C to 70°C	MIL-STD-202, Method 215
	-55° to 105°C Ambient Environment -65° to 150° C Ambient Environment 15 psig, 100% RH, 121°C, 96 hours -65° to 150°C, 100 cycles 85°C/ 85% RH, 168 hours Sn-Pb Eutetic Process: 240°C peak Pb-Free Process: 260°C peak Bake at 125°C for 24 hours Soak at 85°C/85% RH for 168 hours, Reflow 3 cycles at 240°C peak (Non-RoHS) or 260°C (RoHS) 10X magnification, 95% coverage Isopropyl alcohol + mineral spirits at 25°C; terpene defluxer at 25°C; distilled water + proylene glycol monomethyl ether +

ENV82 Rev: OR

10/06/15

M153215 File: ENV82.pdf

This document and its contents are the property of Mini-Circuits.