

AN-060-045

Excellence in Performance

Proven strategies for producing the world's best RF MMIC's

ISO 9001:2000

our promise to our customers

- meet stated requirements
- exceed expectations
- continuously be improved

Mini-Circuits

ISO 14001:2002

our commitment to the environment

- regulatory compliance
- pollution prevention
- continual improvement

Table of Contents	Page
Introduction	2
Quality Designed-in Transient Current Protection Circuits Die Layout Material Selection	2 2 3
Quality Manufacturing Electronic Wafer Mapping In-process Controls In-process Controls details Dynamic Test Specifications	3 4 5 6
Reliability Testing New Product Introduction/Qualification On-going Monitoring Example of Moisture Sensitivity Level 1 (MSL 1) rating in accordance with IPC/JEDECJ-STD-020C Additional tests and evaluations conducted by Mini-Circuits MMIC Amplifier's Junction Temperature Measurement and Monitoring Program	7 8 8-9 10 11
Physical Analysis	12-14

Excellence in Performance Delivery System

Introduction

Mini-Circuits is committed to building products which meet or exceed customers' expectations. As we are ISO 9001:2000 and ISO 14001:2004 certified, we produce products using the highest quality and reliability standards.

This paper will highlight key differences in the approach between Mini-Circuits' and typical market products. To be the world leader in RF and microwave products, we always insist on consistent performance, world-class quality and outstanding reliability in our products. As one of the few suppliers who own and manage their design and manufacturing facilities, Mini-Circuits is able to provide the most consistent, highest quality products to our customers.

Quality Designed-in:

Transient Current Protection Circuit

The EXTRA-RELIABLE Amplifiers (ERA) Series amplifiers are based on InGaP HBT (Heterojunctionbipolar-transistor) technology and achieve wideband high gain performance via a Darlington configuration. HBT technology provides many benefits that are not available in commonly used MESFET devices, namely single supply voltage operation and unconditional stability through the entire amplifier frequency range.

However, current transients that occur during power-up can cause damage in any high gain amplifier that uses a Darlington configuration. To address this issue, we design amplifiers with transient current protection circuits, which prevent damaging of the circuits by unforeseen electrical spikes, while still providing state-of-the-art performance.

-

ERA-2 die close-up view

Transient protection circuits

Quality Designed-in: *Die Layout*

Features:

- (a) Heat sources are separated to minimize heat coupling.
- (b) Metal structures provide better heat sinks
- (c) Double bonds on ground provides better grounding and heat dissipation.

Quality Designed-in:

Material Selection

Materials used for assembly have been carefully chosen to meet moisture sensitivity standards and improve thermal conductivity performance. Mini-Circuits' stringent material selection improves GaAs thermal conductivity to prevent performance degradation and catastrophic failures.

Material	Mini-Circuits	Typical market products
Mold compound Thermal conductivity	150 x 10 ⁻² W/m° K	88 x 10 ⁻² W/m°K
Silver Epoxy Thermal conductivity	45 W/m°K	2.5 W/m°K
Leadframe Thermal conductivity	<u>(Copper Alloy)</u> 259.0 W/m°K	<u>(Alloy42)</u> 14.7 W/m°K

Benefits:

Mold compound - 2 times more thermal conductivity compared to the typical market product. Silver Epoxy - 18 times more thermal conductivity compared to the typical market product. Leadframe – 18 times more thermal conductivity compared to the typical market product.

Quality Manufacturing:

Electronic Wafer Mapping

Every die on our wafers is individually tested and electronically mapped according to key performance parameters, enabling us to select specific die for specific production requirements. This results in products with very consistent and tightly distributed performance.

Quality Manufacturing:

In-Process Controls

ead form and device singulation Lead form inspection (forming quality)

00% DC and RF test

ision system

Finished

Goods

nspection

Pack

Final inspection

Wafer maps provide the location of specific die with specific performance features, allowing us select the die we need to meet packaged device requirements. This enables us to deliver production lots with customer-specific or tight performance distributions.

Process Monitors

Our process monitors give us continuous feedback on the performance of our assembly systems, to make sure they are operating as designed to produce high quality products. Critical machine performance parameters are monitored using control charts, which are reviewed frequently to keep our processes in control.

In-Process Inspections

In-process inspections give us real-time process feedback to fine tune processes or make immediate corrections, to insure that products meet our quality standards, before they are allowed to be processed further.

Material Selection

We use mold compounds, lead frame materials, and package designs with excellent heat dissipation properties, that improve product performance and longterm reliability, and that also meet regulatory requirements.

All Mini-Circuits semiconductor products are offered in RoHS compliant models.

Performance monitors

Environmental testing such as temp cycling, helps us monitor our products' reliability. HTOL, HAST, and other operating life tests give us the information needed to improve our production processes and future product designs. Performance monitors such as junction temperature measurements assure us that the product continues to meet data sheet requirements as originally designed. Tin whisker growth, solderablility, and other tests, help us monitor the integrity of our products.

Quality Manufacturing: In-Process Controls details

No	Process	Characteristics	Sample size	Frequency	Acceptance Criteria
1	Die Attach	Die tilt	1 unit/machine	1x/day/machine	≤ 5 mils
		Die bond line	1 unit/machine	set up	Min 0.3 mils
		thickness			
		Die shear strength	4 units/machine		≥ 0.25 kgF
2	Wire bond	Ball size	2 units; 2 balls/unit/machine	1x/day/machine set up	2.50 to 3.50 mils
		Wire loop height	5 units; 1		5.0 +/-1.0 mils
			wire/unit for each		(Lower loop)
			ground & lead		6.0 +/-1.0 mils
			bond		(higher loop)
		Wire pull strength	2 wires/unit;4 units/machine		≥ 4gF
		Ball shear	2 balls/unit; 4		≥ 25 gF
		strength	units/machine		Ū
3	Molding	Wire sweep	1 wire/unit;5	1x/day/machine	< 12%
			units/ machine		
4	Plating	Plating thickness	2 strips; 5 readings/ strip	Every lot	≥ 300 micro inch
		Scratch test	8 leads		No peeling plating
		Adhesion test	8 leads		No peeling plating
		Bend test	5 leads		No peeling plating
		Solderability	8 leads		> 95% solder
5	Ink .	Resistance to	20 units/solvent	Every shift	No smearing of
	marking	solvent			marking
6	Trim/ Form/	Package outline	5 units	Every lot	Per Package Outline Specification
	Singulate	Lead Coplanarity	5 units		≤ 0.1 mm
7	Test	At Mini -Circuits, v just meet specifica expectations, we t	we do not consider ations. To pursue o est our products to	it good enough to ur goal of <i>exceed</i> 4.5 sigma limits	o ship products that ding our customers' instead of the

Benefits: Our extensive in-process controls provide early detection of process variation and potential quality issues, providing crucial information for real-time process corrections.

Quality Manufacturing:

Dynamic Test Specifications

In pursuit of our goal to exceed our customers' expectations, we test our products to statistically generated 4.5 sigma limits instead of the specification limits. As a result, the products that are shipped to our customers are very consistent in performance with tight distributions.

Diagram illustrates 4.5 sigma limits used instead of specification limits. Only products from the shaded area for lot 1 will be tested good and shipped to customers.

Diagram illustrates 4.5 sigma limits used instead of specification limits. Only products from the shaded area for lot 3 will be tested good and shipped to customers.

Reliability Testing:

New Product Introduction/Qualification

Extensive qualification processes for new products. Every new product goes through stringent JEDEC and MIL-STD stress and accelerated-life tests. Every product is subjected to destructive stress tests to add to our understanding of each product's capabilities and operating limitations.

Required Test	Conditions	Reference	Quantity
Bond Pull	4 gr. minimum for 1.0 mil diameter Au wire	MIL-STD-883E	30
		method 2011	readings
Ball Shear	30 gr. average: 20 gr. for 1.0 mil diameter	JESD22-B116	30
	Au wire with 3X ball size		readings
Die Shear	.04 kg per 10 ⁻⁴ in ² die area	MIL-STD-883E	10
		method 2019	readings
Visual Inspection	Low Power Microscope	Mini-Crcuits	172
	Magnification 40X	specification	units
Electrical Test	Room Temperature	Data Sheet	92 units
Moisture Sensitivity	Bake at 125C for 24 hours.	JESD-020C	92 units
Level 1	Soak at 85C and 85% RH for 168 hours		
	Solder Reflow 3 cycles at 260C peak		
Temperature Cycle	-65C to 150C	MIL-STD-883E	77 units
	500 cycles, 15 minute dwell time	Method 1010.7	
		condition C	
Autoclave	121C, 100% RH	JESD22-A102C	15 units
	15 psig for 96 hours	condition C	
Solderability Test	8 hours steam ageing	JESD22-B102D	10 units
SnPb solder paste	Reflow 3 cycles at 225C +/- 5C		
Solderability Test	8 hours steam ageing	JESD22-B102D	10 units
SnAgCu solder paste	Reflow 3 cycles at 245C +/- 5C		
Method 2004.5	Apply a tension of 227 gr. on a package lead	MIL-STD-883E	30 units
Tension A	for 30 seconds	Method 2004.5	
		condition A	
Method 2004.5	Apply a tension of 227 gr. on a package lead	MIL-STD-883E	30 units
Bending Stress B	and swing at a 15 degree angle	Method 2004.5	
		condition B	
Package Dimension	Per package outline specifications	Datasheet	10 units
Resistance to	Solution A,C,D and reflow 3 cycles	MIL-STD-202F	10 units
Solvents		Method 215J	

Reliability Testing:

Ongoing Monitoring

In addition to product qualifications, Mini-Circuits commits to regular monitors of our products to ensure that our high standards in quality and reliability are maintained and achieved over the product lifetime.

Our Reliability Database captures and tracks the reliability performance of our manufacturing lots over time. This database provides a complete record of each product's reliability history.

Example: Moisture Sensitivity Level 1 (MSL 1) rating in accordance with IPC/ JEDECSTD-020C.

The following shows C-Mode Scanning Acoustic Microscope (C-SAM) photos of a device before and after moisture sensitivity level 1 (MSL 1) tests.

(5)	121	\$	1	141	101	121		\$
151	101	121	1	151	\$	4	:Pr	5
ធ្វោ	5	151	1	(9 1	1	\$	5	151
1	(\$1	1\$1	151					

Before MSL-1 level testing : top view

Before MSL-1 level testing : bottom view

After MSL-1 level testing : top view

After MSL-1 level testing : bottom view

The table below shows delamination determination after MSL 1 pre-conditioning tests. Monitoring results have shown no delamination detected over the past 3 years.

QuerterWeer	Delamination Study		
Quarter/ rear	Quantity Tested	Quantity Failed	
Q1/05	1671	0	
Q2/05	2416	0	
Q3/05	1040	0	
Q4/05	1281	0	
Q1/06	1280	0	
Q2/06	560	0	
Q3/06	1651	0	
Q4/06	1969	0	
Q1/07	2089	0	
Q2/07	2088	0	
Q3/07	1819	0	
Q4/07	1520	0	

Reliability Testing: Additional tests and evaluations conducted by Mini-Circuits

No	Test Type	Reference Document	Application
1	Visual Inspection	Mini-Circuits Specification	External Package Inspection
2	Room Temperature Electrical Test	Mini-Circuits Specification	Electrical Test to data sheet specifications
3	Scanning Acoustic Microscope (SAM) Analysis	Jedec Standard, J-Std-020C	To detect Delamination or gap between materials
4	Resistance to Soldering Heat	Jedec Standard, J-Std-020C	To simulate Surface Mount Assembly Processes
5	Moisture Sensitivity Level	Jedec Standard, J-Std-020C	To determine the Moisture Sensitivity Level of a package
6	Temperature Cycle	Military Standard, Mil-Std-883E, method 1010.7	Test the ability to withstand Alternating Temperatures
7	Autoclave	Jedec Standard, JESD22-A102-C	To evaluate the ability to withstand Moisture Resistance
8	High Temperature Storage	Jedec Standard, JESD22-A103C (Extended to 5000 hours)	To evaluate the effect of device storage at Elevated Temperatures
9	Humidity Steady-State	Military Standard, Mil-Std-202F, method 103B condition C	To evaluate at High Humidity and at an Elevated Temperature
10	Temperature and Humidity Test without Bias	Jedec Standard, JESD22-A101-B	To evaluate storage in a Humid Environment
11	Whisker Growth Test	Jedec Standard, JESD22A121	To study Tin Whisker Growth on finishes containing Tin
12	Thermal Diode	Mini-Circuits specification	MMIC Junction Temperature Measurement
13	Solderability Test, Solder Dip Method	Military Standard, Mil-Std-883E, method 2003.7	To determine the Solderability of a device
14	Solderability Test, Surface Mount Method	Jedec Standard, JESD22-B102D	To determine the Solderability of a device
15	Lead Integrity Test	Military Standard, Mil-Std-883E, method 2004.5	To evaluate the Integrity of Device Leads
16	Tape Peel Test	Mini-Circuits specification	To evaluate Plating Adhesion
17	Scratch Test	Mini-Circuits specification	To evaluate Plating Adhesion
18	Resistance to Solvents	Military Standard, Mil-Std-202F, method 215J	To evaluate the Ink Marking and encapsulant materials.
19	Welding Test	Mini-Circuits specification	To determine Weld-ability and Weld Peel Strength
20	Plating Thickness	Mini-Circuits specification	Thickness Measurement
21	Plating Composition	Mini-Circuits specification	Composition Measurement
22	X-Ray Analysis	Mini-Circuits specification	Internal Package Inspection

Reliability Testing: *MMIC Amplifier Junction Temperature Measurement and Monitoring Program*

Temperature has a direct impact on the operating performance and reliability of semiconductor devices. Devices that operate at high junction temperatures for a long period of time can sustain permanent damage and shorten lifetimes.

At Mini-Circuits, MMIC amplifier junction temperature measurement and monitoring is performed on every production wafer lot to ensure our customers receive products with the highest quality, reliability and performance.

A Temperature-Sensing Diode is embedded next to the operating junction on this new die design

Applying a temperaturesensing diode as a sensor to the device can accurately measure the junction temperature and the thermal resistance over a range of operating and environmental conditions.

Thermal mapping image of an MMIC amplifier die.

Junction Temp		ature Measurement tudy	
i eai	Measured Wafer lots	Quantity Failed	
2005	52	0	
2006	154	0	
2007	132	0	

Benefits:

Reliability Monitoring is used to evaluate product reliability performance throughout a product's lifetime. Comprehensive qualifications are performed for process and materials changes during the product's lifetime. A Reliability Database tracks the reliability performance over time and archives all qualification data. This database provides a complete record of each product's reliability history.

Physical Analysis

Our world-class Physical Analysis lab provides unparalleled analysis capabilities. We have the ability to analyze product performance characteristics from packaged devices through individual layers in a die. This ability gives us a powerful tool to help us correlate device construction and physical characteristics with device performance.

Physical Analysis:

Non-Destructive Analysis Techniques

Physical Analysis: *Non-Destructive Analysis Techniques*

Physical Analysis: *Destructive Analysis Techniques*

Our high-volume delivery of high-value products is based on the foundation of innovative product designs, comprehensive in-process controls, rigorous product qualifications and reliability testing, and the most complete physical analysis capabilities in our industry. These work in concert to provide our customers the best RF and Microwave components available on the market, giving them a true competitive advantage.

© 2015 Mini-Circuits

IMPORTANT NOTICE

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefor.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at <u>www.minicircuits.com/homepage/terms_of_use.html</u>.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

AN-60-045, REV. A, M150261, 04/14/2015 SH 17 OF 17