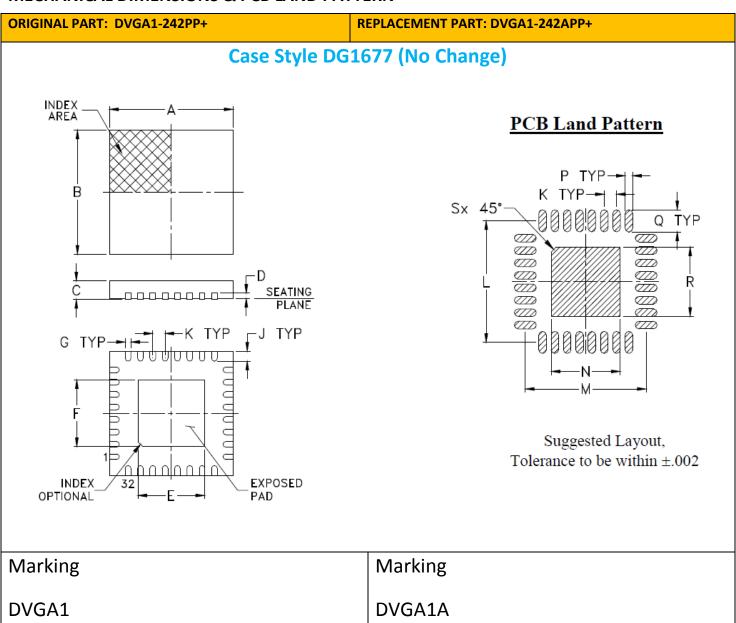


REPLACEMENT PART REFERENCE GUIDE, DVGA1-242PP+


AN-60-091

ORIGINAL PART: DVGA1-242PP+
REPLACEMENT PART: DVGA1-242APP+

Replacement Part has been judged by Mini-Circuits Engineering as a suitable replacement to Original Parta

MECHANICAL DIMENSIONS & PCB LAND PATTERN

Notes:

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

CONCLUSION:

1) FORM-FIT-FUNCTIONAL COMPATIBLE a:

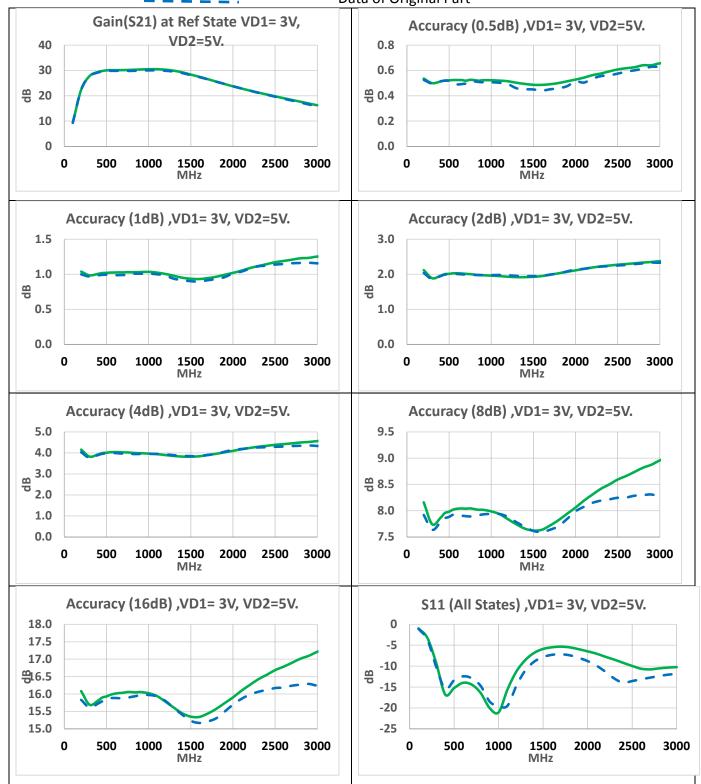
Replacement part is Form, Fit compatible. Following is a summary of changes/improvements:

Typical performance: See paragraphs 2 and 3

Min/Max Specifications seen below,

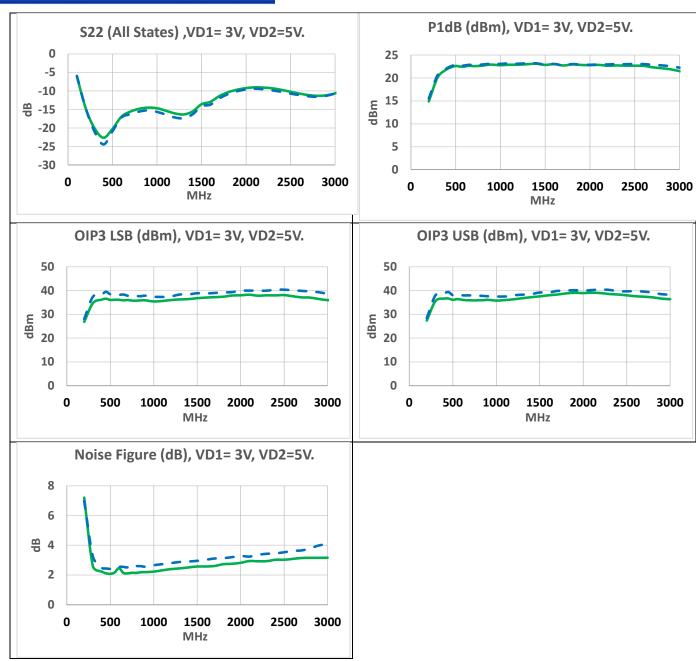
Parameter	Original Part (DVGA1-242PP+)	Replacement Part (DVGA1-242APP+)			
Control Input High Voltage	0.7VD1 min	1.17V min, 3.6V max			
Control Input Low Voltage	0.3VD1 max	-0.3V min & 0.6V max			
Supply Current, ID1	100μA max (During turn-on and transition between attenuation states ID1 may increase up to 2mA)	200μA max			
Control Current	1 μA max	1 μA max except, 30μA typ. for C0.5, C16 and 2μA typ. for LE			

2) PERFORMANCE COMPARISON, VD1=3V, VD2=5V:


PERFORMANCE CO	IVIPA	KISU	Na V _{D1}	<u>-3V,</u>	v _{D2} =5	<u>v</u> .		
			DVC	11.242	۸DD.			
			_	1-242 of 5 Ur		DVC	A1-242	DD.
			Data of 5 Units in					
			TB-681A+ at			Data of 2 Units in		
D) (O A 4 O 4 O A D D	Frequency (MHz)		+25degC		TB-681+			
DVGA1-242APP+			Min.	Avg.	Max.	Min.	Avg.	Max.
	400	400	29.3	29.3	29.4	28.9	29.1	29.2
	450	450	29.5	29.7	29.7	29.2	29.4	29.5
CAINI (OAD)	500		29.8	30.0	30.0	29.5	29.7	29.8
GAIN (0dB)	1000	1000	30.4	30.4	30.5	30.0	30.0	30.0
	1400	1400	29.2	29.3	29.3	28.8	28.9	29.0
	2000	2000	23.7	23.9	24.1	23.6	23.7	23.8
A COLIDA OV	2400		20.5	20.7	20.9	20.3	20.4	20.4
ACCURACY	450			0.01	0.03		0.01	0.02
(0.5dB)	1000			0.01	0.09			0.07
ACCURACY	450	1000	-0.02	0.01	0.03	-0.01	0.00	0.02
(1dB)	1000		-0.11	0.00	0.14	-0.11	-0.01	0.14
ACCURACY	450	1000	-0.05	-0.01	0.03	-0.02	-0.01	0.01
(2dB)	1000			0.01	0.25			0.26
ACCURACY	450	1000		-0.01	0.04	-0.06		0.00
(4dB)	1000			-0.03	0.34	-0.17		0.32
ACCURACY	450	1000	-0.14	-0.02	0.06	-0.16	-0.10	-0.04
(8dB)	1000	2400	-0.49	-0.11	0.50	-0.44	-0.12	0.26
ACCURACY	450	1000	-0.18	-0.02	0.11	-0.21	-0.10	0.02
(16dB)	1000		-0.80	-0.24	0.55	-0.88	-0.35	0.14
	400	400	16.8	17.3	17.4	15.5	15.5	15.5
INDUT DETUDN	450	450	15.9	16.2	16.4	14.4		14.6
INPUT RETURN	500	500	15.0	15.1	15.4	13.4	13.6	13.7
LOSS(All States)	1000	1000	19.7	21.5	24.3	19.6	19.6	19.6
(dB)	1400	1400	6.8	7.2	7.4	8.3	8.6	8.9
	2000		6.5	6.5	6.7	8.4	8.6	8.8
	2400	2400	9.2	9.4	9.6	13.1	13.6	14.0
	400	400	21.6	22.3	22.7	20.4	20.6	20.8
OUTPUT RETURN	450	450	21.0	21.5	21.8	20.2	20.4	20.6
LOSS (dB	500	500	20.2	20.5	20.7	19.8	20.0	20.3
(All States)	1000		14.7	15.1	15.3	15.1	15.2	15.4
(All States)	1400	1400	15.5	15.6	15.6	15.0	15.2	15.4
	2000	2000	9.0	9.1	9.2	8.9	9.0	9.0
		2400	9.4	9.6	9.7	9.3	9.3	9.4
	450	451 1001	35.4 34.5	36.1 35.1	36.6 35.5	37.7 36.1	38.6 36.8	39.4 37.4
		1401	35.5	36.1		37.2	37.8	38.4
					36.4			
OID3/dDm)	2000	2001 2401	37.0 37.3	37.7 37.8	38.2 38.3	38.8 38.5		39.9 39.7
OIP3(dBm)	450	450	22.0	22.2	22.3	22.6	22.6	22.6
	1000	1000	22.4	22.6	22.8	23.0	23.0	23.1
	1400	1400	22.4	22.0	23.1	23.0	23.0	23.1
	2000		22.7	22.7	22.8	22.8	22.8	22.9
P1dB(dBm)	2400	2400	22.7	22.6	22.7	22.9	23.0	23.0
ι Ιαυ(αυπ)	450	450	2.1	2.2	2.2	2.4	23.0	23.0
	1000	1000	2.1	2.2	2.4	2.4	2.4	2.4
	1400	1400	2.5	2.6	2.4	2.0	2.0	2.7
	2000	2000	2.8	2.0	2.0	3.3	3.3	3.3
NOISE FIGURE(dB)	2400		3.0	3.0	3.1	3.4	3.4	3.5
Current (mA)	DC	DC	157.1	158.1				
Canchi (III/A)	20	20	101.1	100.1	100.7	100.0	100.0	100.7

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

3) PERFORMANCE COMPARISON CURVES_a V_{D1}=3V, V_{D2}=5V:


Data of Replacement Part Data of Original Part

Notes:

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

IMPORTANT NOTICE

© 2015 Mini-Circuits

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefor.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms_of_use.html.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

Notes: