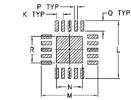


REPLACEMENT PART REFERENCE GUIDE, DAT-15575-PP+ AN-70-030


ORIGINAL PART: DAT-15575-PP+
REPLACEMENT PART: DAT-15575A-PP+

Replacement Part has been judged by Mini-Circuits Engineering as a suitable replacement to Original Parta

MECHANICAL DIMENSIONS & PCB LAND PATTERN

Suggested PCB Land Pattern

K	L	М	N	Р	Q	R
.020	.177	.177	.081	.010	.032	.081
(0.50)	(4.50)	(4.50)	(2.06)	(0.25)	(0.81)	(2.06)

Marking

15575

Marking

DS75

Notes

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

CONCLUSION:

1) FORM-FIT-FUNCTIONAL COMPATIBLE_a:

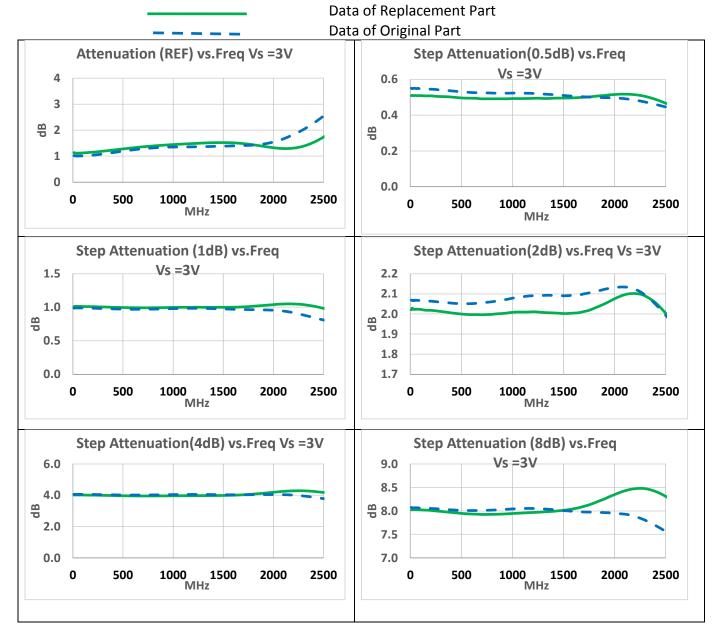
Replacement part is Form, Fit compatible. Following is a summary of changes/improvements:

Typical performance: see part 2) and 3)

For Min/Max Specifications, see below:

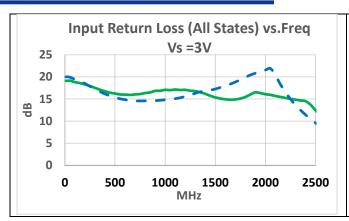
Parameter		DAT-15575-P	P+	DAT-15575A-PP	DAT-15575A-PP+			
		(Original Part	t)	(Replacement P	(Replacement Part)			
Frequency (GHz)		DC-2.0	DC-2.0		0.001-2.5			
VDD(V)		+2.7 to +3.3		+2.3 to +3.6, usable to +5.2V				
Control input High (V)		0.7Vdd to Vdd		+1.17 to +3.6				
Control input Low (V)		0 to 0.3Vpp		-0.3 to +0.6(0V during power-up)				
IDD (μA)		100 μA max.		200 μA max.				
Control Current (μA)		1 max		20 max				
Attenuation	Step (dB)	<u>Frequency</u>	Spec max	<u>Frequency</u>	Spec max			
accuracy		<u>(GHz)</u>		<u>(GHz)</u>				
	0.5	DC-1.2	0.17	0.001-1.2	0.17			
		1.2-2.0	0.18	1.2-2.0	0.18			
	1	DC-1.2	0.19	0.001-1.2	0.18			
		1.2-2.0	0.20	1.2-2.0	0.20			
	2	DC-1.2	0.23	0.001-1.2	0.21			
		1.2-2.0	0.25	1.2-2.0	0.26			
	4	DC-1.2	0.25	0.001-1.2	0.27			
		1.2-2.0	0.35	1.2-2.0	0.36			
	8	DC-1.2	0.25	0.001-1.2	0.39			
		1.2-2.0	0.55	1.2-2.0	0.6			
Operating Temperature (°C)		-40 to 85		-40 to 105				
Storage Temperature(°C)		-55 to 100		-65 to 150				
ESD (HBM)		< 500V		1000 to <2000V				
ESD (MM)		<100V		500 to <1000V				
Max Operating Power		Not Specified		From 1-30 MHz per Figure 1 (in Model Data				
				Sheet) and +24 dBm above 30 MHz				
Max Input Power		+24 dBm		1-30 MHz (10-24 dBm) per Figure 2 of data				
					Sheet			
				>30 MHz: +30 dBm				
Absolute Max Rating: Vdd(v)		-0.3V Min., 4V Max.		-0.3V Min., 5.5V Max.				
Absolute Max Rating: Voltage on any digital input (V)		-0.3V Min., Vdd+0.3V Max.		-0.3V Min., 3.6V Max.				

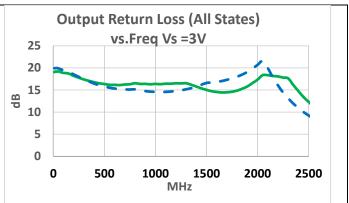
Notes:
a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.


2) PERFORMANCE COMPARISON_a (TYPICAL), DC Voltage=3V:

PERFORMANCE COM	VIF AL	NIJUI						
			DAT-15575A-PP+			DAT-15575-PP+		
DAT-15575A-PP+	Freq		Data of 2 Units		Data of 1 Units			
VS.	(MHz)		on TB-337			on TB-337		
DAT-15575-PP+	_		Min.	_	Max.	Min.	Avg.	Max.
STEP ATTENUATION	10	1200	1.1	1.3	1.5	1.0	1.2	1.4
0dB (dB)		2000	1.3	1.5	1.5	1.4	1.4	1.5
		2500	1.3 0.49	1.4 0.50	1.7	1.5 0.52	2.0	2.5
STEP ATTENUATION		1200 2000	0.49	0.50	0.52 0.52	0.52	0.54 0.51	0.55 0.52
0.5dB (dB)			0.43	0.51	0.52	0.30	0.48	0.52
	10	1200	0.99	1.00	1.02	0.97	0.98	0.99
STEP ATTENUATION		2000	1.00	1.01	1.04	0.95	0.97	0.98
1dB (dB)		2500	0.98	1.04		0.81	0.89	0.95
CTED ATTENUATION	10	1200	2.00	2.01	2.04	2.05	2.07	2.09
STEP ATTENUATION	1200	2000	2.00	2.02	2.09	2.09	2.10	2.13
2dB (dB)	2000	2500	2.00	2.09	2.13	1.99	2.09	2.13
STEP ATTENUATION	10	1200	3.95	3.99	4.03	4.01	4.04	4.06
4dB (dB)	1200	2000	3.96	4.04		4.02	4.04	4.05
+4B (4B)		2500		4.26		3.79	3.95	4.04
o=== /=====	10	1200	7.90	7.97	8.03	8.01	8.04	8.07
STEP ATTENUATION		2000	7.94	8.08		7.95	8.00	8.05
8dB (dB)	2000	2500	8.31	8.42	8.50	7.56	7.81	7.95
INPUT RETURN LOSS	10	1200 2000	15.9	17.7 16.2	19.4	15.0 19.6	17.7 22.8	20.2
0dB (dB)		2500	14.8 12.3		19.2			30.4
	2000	1200	16.3	20.0 18.2	27.7	9.6 15.5	17.4 18.3	30.4 21.3
INPUT RETURN LOSS		2000	15.0	16.2		19.5	22.7	34.3
0.5dB (dB)		2500	13.1	21.6		10.3	19.0	34.3
	10	1200	16.6	18.6		16.1	18.7	21.5
INPUT RETURN LOSS		2000	15.2	16.5		19.3	21.1	30.5
1dB (dB)		2500	13.8	23.6		11.7	22.5	41.9
INPUT RETURN LOSS	10	1200	16.7	19.0	22.1	14.5	17.1	20.0
2dB (dB)	1200	2000	15.8	17.0	20.6	16.9	23.3	32.5
ZGD (GB)	2000	2500	14.5	23.1	34.7	9.9	16.1	26.0
INPUT RETURN LOSS	10	1200	19.3	25.1	35.6	14.5	17.3	20.6
4dB (dB)		2000	16.6	17.7	20.2	16.1	22.9	32.4
, ,	2000		14.9	18.1	19.9	10.6	16.4	25.4
INPUT RETURN LOSS	10	1200	18.9	27.3	51.7	14.7	17.9	21.5
8dB (dB)		2000	17.7	18.4	20.0	15.6	23.5	42.7
	2000	2500 1200	14.1 16.1	16.5 17.7	18.2 19.4	12.1 15.4	18.1 17.8	28.1
OUTPUT RETURN LOSS		2000		15.7	17.4	18.9	20.5	23.8
OdB (dB)		2500	12.3	17.4		9.3	15.4	23.5
(db)	10	1200	16.6	18.4	20.6	15.4	17.9	20.5
OUTPUT RETURN LOSS		2000					20.4	
0.5dB (dB)		2500	13.4	18.9		9.4	15.5	23.7
	10	1200	16.6	18.4	20.9	15.1	17.4	20.0
OUTPUT RETURN LOSS	1200	2000	15.0	16.2		17.4	20.2	24.4
1dB (dB)		2500	13.8	19.9	25.9	9.6	15.6	23.7
OUTPUT RETURN LOSS	10	1200	16.8	19.0	22.2	17.2	19.9	23.3
2dB (dB)		2000	15.6	16.7	20.2	18.3	19.9	27.7
245 (45)	2000	2500	15.1	22.6	33.7	12.7	21.8	33.8
OUTPUT RETURN LOSS	10	1200	16.3	19.4		17.5	20.7	25.0
4dB (dB)	1200	2000	16.5	18.6	26.3	17.8	19.4	26.5
, ,	2000	2500	14.6	24.6		14.3	24.4	44.5
OUTPUT RETURN LOSS	10	1200	18.6	27.0	48.8	16.1	20.1	24.4
8dB (dB)	1200 2000	2000 2500	18.4 15.6	19.2 19.4	21.7 22.2	16.3 14.8	19.6 24.0	29.8
	_	1200	15.6	17.7	19.4	14.5	17.1	36.8 20.0
RETURN LOSS		2000		15.7	17.4	14.8	17.5	20.7
(All States) (dB)		2500		14.8		9.3	15.4	21.9
	∠000	∠500	12.3	14.8	10.1	9.3	15.4	∠1.9

Notes:
a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.




PERFORMANCE COMPARISON CURVES_a (TYPICAL), DC Supply=3V:

Notes:
a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

IMPORTANT NOTICE

© 2015 Mini-Circuits

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefore.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms of use.html.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

Notes

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.