APPLICATION NOTE

REPLACEMENT PART REFERENCE GUIDE, YSW-2-50DR+ AN-80-016

ORIGINAL PART:
REPLACEMENT PART:
Replacement Part has been judged by Mini-Circuits Engineering as a close replacement to Original Part ${ }_{a}$

MECHANICAL DIMENSIONS \& PCB LAND PATTERN

ORIGINAL PART: YSW-2-50DR+	REPLACEMENT PART: M3SWA-2-50DRA+
Case Style 99-01-560	Case Style DL805
Marking - WYW $+$ MCL YSW	Marking 3SWA WYW MCL

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

ORIGINAL PA	T: YSW-2-50DR+	REPLACEMENT PART: M3SWA-2-50DRA+		
Applicat RF OUT All RF co or held	nections must be DC blocked OV DC.	Application Circu RF Needs external bla RF ports (Suggested value		Cblock --l1-0 RF2 citors on all
Pin Conn	ctions	Pin Connections		
Function	Pin	Function	Pin	
RF IN	4	RF IN	6	
RF OUT 1	12	RF OUT 1	1	
RF OUT 2	14	RF OUT 2	4	
Control	2	CMOS IN (Note 1)	2	
+5V	19	$\operatorname{VDD}(+3$ to +5 V)	5	
-5V	7	No Connection (Note 2)	7	
NOT USED	9,17	CMOS GND (Note 1)	3	
GND EXT	ALL OTHER	GND	8	
		GND	PADDLE	
		Notes: Pin Connections Pin 7 has no internal conn 1) Driver is CMOS com 2) In replacement s 7 with no impact	same as in tion patible in tions, -5V performa	inal part, except of TTL be applied to Pin

[^0]
CONCLUSIONS:

1) FORM-FIT-FUNCTION COMPATIBLE ${ }_{a}^{2}$:

Replacement part is not Form-Fit compatible. Customer PCB layout need to change plus external blocking Capacitors on RF ports are needed.
Following is a summary of Electrical changes/improvements:

Typical performance: See Paragraphs 2

Min/Max Specifications seen below,

Parameter	Original Part (YSWA-2-50DR+)	Replacement Part (M3SWA-2-50DRA +)
Positive Power Supply (VDD)	4.9 to 5.5 V	+3 V to +5.0V
Negative Power Supply(Vss)	-5.5 to -4.9V	Not Required
Control Input Low Voltage	OV Min, 0.8V Max	OV Min, 0.5 Max
Control Input High Voltage	3.5V Min, 5.5VMax	0.7 VdD to VDD
+5 V Positive Supply Current (IDD) -5V Negative Supply Current (ISS)	16 mA Typ. 20 mA Max. 14 mA Typ. 20 mA Max	$50 \mu \mathrm{~A}$ typ. , $200 \mu \mathrm{~A}$ max ---
Control Current	High V, 5mA Max, Low V, 0.2mA Max	0.2 uA typ., 10 uA max
Rise/Fall Time (10 to 90\%)	6ns typ. 12ns Max	16 ns Typ.
Switching Time (turn on/off) 50% Control to 90% RF/10\% RF	20ns typ. 40ns Max	29 ns Typ.
P1dB (dBm) at VDD=5V typ. Over	DC to 500MHz 20 Typ. 15Min. $500-2000 \mathrm{MHz} 23$ Typ. 19Min. $2000-5000 \mathrm{MHz} 21$ Typ. 18 Min	$100-1000 \mathrm{MHz} 23$ Typ. $1000-2000 \mathrm{MHz} 30$ Typ. 2000-4500MHz 26 Typ.
$\begin{aligned} & \hline \text { ESD } \\ & \text { HBM } \end{aligned}$	Class1C (1000 to <2000V)	Class 1A (250 to < 500V)
Absorptive	No	Yes, from $500-4500 \mathrm{MHz}$ (See Paragraph 3)
DC Blocking Caps on RF ports	All RF connections must be DC blocked or held at OV DC.	Needs external blocking Capacitors on all RF ports (Suggested value: 47 pF)

[^1]2) PERFORMANCE COMPARISON CURVES: Original Part (Vdd $=4.6 \&-4.6 \mathrm{~V}, \mathrm{Vctrl}=0 \& 5 \mathrm{~V}$) Replacement Part (Vdd $=5 \mathrm{~V}, \mathrm{VctrI}=0$ \& 3.7V)

Replacement Guide	Freq (MHz)		$\begin{gathered} \text { M3SWA-2- } \\ \text { 50DRA+ } \\ 5 \text { Units } \\ \text { @Vdd }=5 \mathrm{~V} \\ \text { @Vctrl }=0 \mathrm{~V} \& \\ 3.7 \mathrm{~V} \\ \hline \end{gathered}$			$\begin{aligned} & \text { YSW-2-50DR+ } \\ & 20 \text { Units } \\ & @ \mathrm{Vdd}= \\ & -4.6 \mathrm{~V} \& 4.6 \mathrm{~V} \\ & @ \mathrm{Vctrl}=0,5 \mathrm{~V} \\ & \hline \end{aligned}$		
	From	To	Min.	Avg.	Max.	Min.	Avg.	Max
	10	10	0.6	0.6	0.6	0.5	0.6	0.6
INSERTION	100	100	0.7	0.7	0.7	0.6	0.6	0.6
LOSS	1000	1000	0.8	0.8	0.8	0.8	0.8	0.8
S-1	2000	2000	1.0	1.0	1.1	1.0	1.1	1.1
(dB)	4500	4500	1.4	1.5	1.6	1.5	1.5	1.5
	10	10	0.6	0.6	0.6	0.5	0.5	0.6
INSERTION	100	100	0.6	0.6	0.7	0.6	0.6	0.6
LOSS	1000	1000	0.8	0.8	0.8	0.7	0.8	0.8
S-2	2000	2000	1.0	1.0	1.0	0.9	0.9	0.9
(dB)	4500	4500	1.3	1.4	1.4	1.4	1.4	1.5
	10	10	75.4	76.4	77.1	78.0	79.4	81.
	100	100	65.9	66.0	66.2	60.8	61.3	62.0
ISOLATION	1000	1000	55.5	59.1	72.8	41.0	41.3	41.5
S-1	2000	2000	42.1	43.5	48.2	33.7	34.0	34.2
(dB)	4500	4500	27.2	30.4	37.9	39.8	41.3	42.6
	10	10	69.9	70.3	70.9	76.8	78.6	80.8
	100	100	59.3	59.3	59.4	60.1	60.7	61.2
ISOLATION	1000	1000	61.0	62.6	65.9	40.2	40.6	41.
S-2	2000	2000	44.6	46.4	51.8	34.8	34.9	35.
(dB)	4500	4500	27.7	30.9	38.3	38.0	39.2	39.
	10	10	24.5	24.5	24.6	24.8	25.0	25.
RETURN	100	100	24.6	24.7	24.7	25.2	25.4	25.
LOSS	1000	1000	26.6	26.9	27.5	19.9	20.2	20.
S(ON1)	2000	2000	21.5	22.1	23.4	15.8	16.0	16.
(dB)	4500	4500	15.6	16.9	17.9	16.9	17.7	18.
	10	10	23.5	24.0	24.3	25.0	25.2	25.
RETURN	100	100	23.3	23.9	24.1	25.5	25.7	26.
LOSS	1000	1000	23.7	24.3	24.7	25.3	25.7	26.
S(ON2)	2000	2000	23.0	23.5	24.0	20.9	21.3	22.
(dB)	4500	4500	16.2	17.4	18.3	17.2	18.1	19.
	10	10	24.4	24.4	24.4	24.7	24.9	25.
RETURN	100	100	24.5	24.6	24.6	25.4	25.6	25.
LOSS	1000	1000	21.8	21.9	21.9	29.9	30.9	31.
1(ON)	2000	2000	17.9	18.1	18.4	14.0	14.3	14.7
(dB)	4500	4500	20.5	22.1	24.4	16.6	17.3	17.
	10	10	23.2	23.8	24.0	24.8	25.0	25.
RETURN	100	100	23.1	23.6	23.8	25.5	25.7	26.
LOSS	1000	1000	22.6	23.1	23.3	27.8	28.5	29.3
2(ON)	2000	2000	17.6	17.9	18.1	18.8	19.4	20.
(dB)	4500	4500	23.4	25.4	28.1	16.9	17.8	18.
	10	10	0.1	0.1	0.1	3.1	3.2	3.3
RETURN	100	100	2.2	2.2	2.2	3.2	3.3	3.4
LOSS	1000	1000	20.8	21.2	21.5	3.0	3.1	3.
1(OFF)	2000	2000	20.4	21.0	21.7	3.7	3.9	4.0
(dB)	4500	4500	13.3	13.7	14.2	4.0	4.2	4.
	10	10	0.1	0.1	0.1	3.1	3.2	3.3
RETURN	100	100	2.1	2.1	2.1	3.2	3.3	3.
LOSS	1000	1000	20.3	20.5	20.9	3.3	3.4	3.
2(OFF)	2000	2000	22.7	23.3	23.7	3.5	3.6	3.
(dB)	4500	4500	14.3	14.9	15.4	4.0	4.2	

Notes:
a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.
3) PERFORMANCE COMPARISON CURVES: Original Part (Vdd $=4.6 \&-4.6 \mathrm{~V}, \mathrm{Vctrl}=0$ \& 5V)

Replacement Part (Vdd $=5 \mathrm{~V}, \mathrm{Vctrl}=0$ \& 3.7V)
— Data of Replacement Part

- - - - -

Data of Original Part

[^2]
APPLICATION NOTE

Notes:

1) SWITCHING/RISE/FALL TIME COMPARISON (Original Part (Vdd = 5 \& -5V, Vctrl $=0$ \& 3.7V)

Replacement Part (Vdd =5V, Vctrl = 0 \& 3.7V)

Rise Time: 10 to 90\% RF, Fall Time: 90\% to 10\% RF
Switching Time:
On Time 50\% Control to 90\%/10\% RF, Fall Time 50\% Control to 10\% RF

Notes:

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

IMPORTANT NOTICE

© 2015 Mini-Circuits

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.
Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so. Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefore.
In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms of use.html.
Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such thirdparty's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

[^3]
[^0]: Notes:
 a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

[^1]: Notes:

[^2]: Notes:

[^3]: Notes:
 a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

