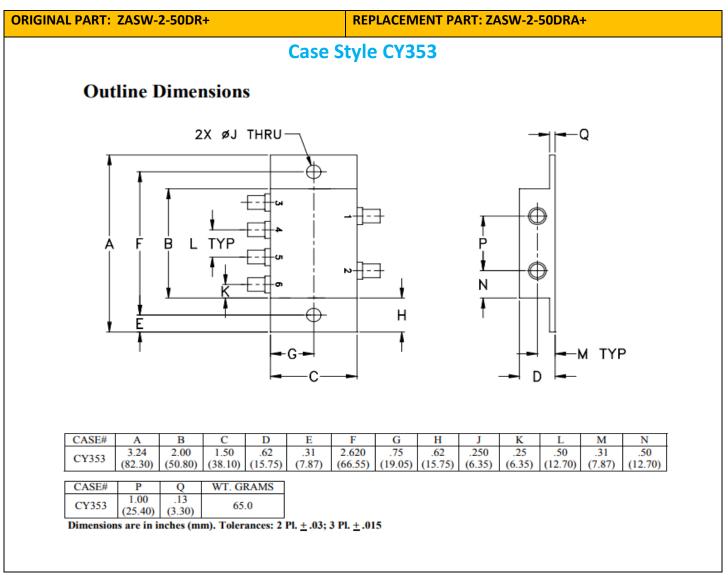


<u>REPLACEMENT PART REFERENCE GUIDE, ZASW-2-50DR+</u> AN-80-020

ORIGINAL PART:

ZASW-2-50DR+


REPLACEMENT PART:

ZASW-2-50DRA+

Replacement Part has been judged by Mini-Circuits Engineering as a suitable replacement to Original Part_a

MECHANICAL DIMENSIONS

Notes

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

CONCLUSION:

1) FORM-FIT-FUNCTIONAL ANALYSIS a:

The Replacement part is Form, Fit compatible.

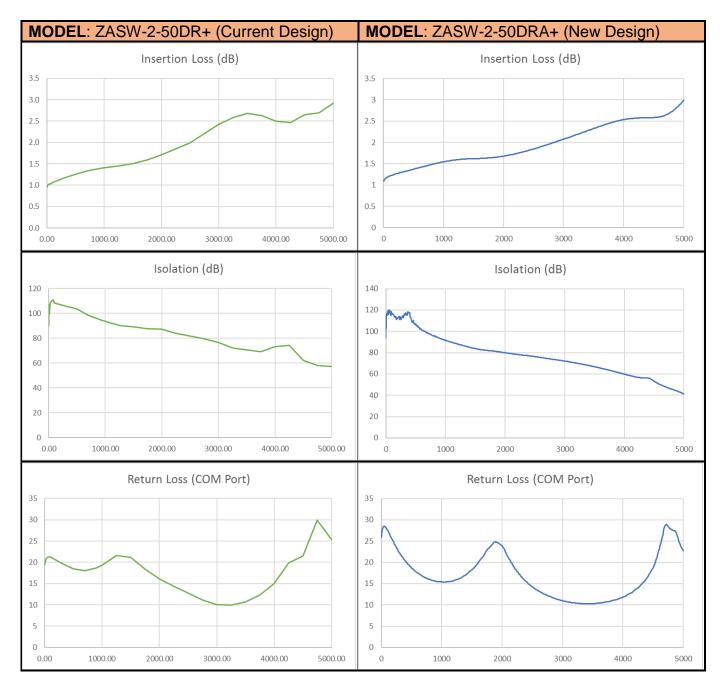
Following is a summary of changes/improvements in the Specification:

For typical performance and Graphs: See paragraphs 2 and 3

Parameter	Frequency		Current Design			New Design		
	Min.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
Insertion Loss (dB)	DC	100		1.30	2.00		1.30	2.00
	100	1000		1.70	2.50		1.70	2.50
	1000	2000		1.80	3.00		1.80	3.00
	2000	5000		3.00	4.50		3.00	4.50
Isolation (dB) IN-OUT	DC	100	80.00	100.00		80.00	100.00	
	100	1000	75.00	90.00		75.00	90.00	
	1000	2000	65.00	82.00		65.00	82.00	
	2000	5000	46.00	68.00		35.00	60.00	
	50			4.00			4 50	
VSWR (:1) COM PORT	DC	5000		1.30			1.50	
VSWR (:1) OUT PORT								
(ON)	DC	5000		1.30			1.45	
()								
Compression 1 dB	DC	100		17.00			-	
	100	1000		20.00			> 20	
	1000	2000		20.00			> 24	
	2000	5000		19.00			> 23	
Max. Input Power (dBm)	-	-			24			31*
Switching time [ns],								
50% of Control to 90% RF(Turn-on) and 10%								
RF(Turn-off)	-	-		10	20		20	
					_•		_•	
Rise/Fall time [ns] (10%-								
90%)	-	-		5	15		5	

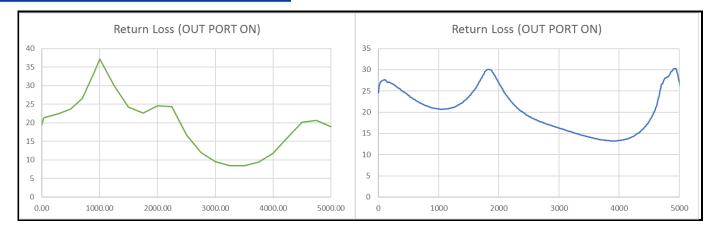
* Frequency = 500-5000 MHz.

Notes: a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.


2) TYPICAL PERFORMANCE COMPARISON AT ROOM TEMPERATURE:

PE Doromotor	Frequency		Current Design			New Design		
RF Parameter	Low	High	Min.	Ave.	Max.	Min.	Ave.	Max.
Insertion Loss S-1(ON) (dB)	0.3	100	0.94	1.00	1.08	1.08	1.14	1.23
	100	1000	1.04	1.27	1.44	1.20	1.39	1.57
	1000	2000	1.35	1.55	1.80	1.53	1.62	1.70
	2000	5000	1.66	2.45	3.19	1.67	2.31	3.09
Insertion Loss S-1(ON) (dB)	0.3	100	0.94	1.00	1.07	1.07	1.13	1.21
	100	1000	1.04	1.27	1.44	1.20	1.38	1.57
	1000	2000	1.35	1.52	1.71	1.51	1.61	1.70
	2000	5000	1.58	2.37	2.92	1.65	2.24	3.02
Return Loss SLIM Port [1(ON)] (dP)	0.3	5000	8.29	18.61	30.11	9.26	17.28	43.75
Return Loss SUM Port [1(ON)] (dB)	0.3	5000	0.29	10.01	30.11	9.20	17.20	43.75
Return Loss SUM Port [2(ON)] (dB)	0.3	5000	8.83	18.51	54.37	10.03	17.77	50.58
	0.0		0.00		001			
Return Loss Port 1(ON) (dB)	0.3	5000	7.46	20.23	46.13	11.83	20.52	51.33
Return Loss Port 2(ON) (dB)	0.3	5000	6.79	20.14	45.89	12.95	21.19	57.57
Isolation S-1 (1-ON) (dB)	0.3	100	83.66	104.27	125.15	92.59	109.26	134.02
	100	1000	88.57	99.76	123.98	91.20	104.74	133.18
	1000	2000	83.25	87.60	93.40	79.59	84.79	93.17
	2000	5000	59.08	70.34	87.92	39.06	63.31	80.27
	_							
Isolation S-1 (2-ON) (dB)	0.3	100	84.55	103.56	123.34	91.96	110.02	141.31
	100	1000	91.16	101.80	112.33	90.62	104.41	133.82
	1000	2000	86.79	91.44	99.70	79.49	84.47	92.05
	2000	5000	52.79	75.21	96.87	42.56	66.32	80.13

Notes: a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.


3) **<u>TYPICAL PERFORMANCE GRAPHS AT ROOM TEMPERATURE</u>:</u>**

Notes:

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

Mini-Circuits®

4) SWITCHING TIME CHARACTERISTICS AND VIDEO LEAKAGE

ZASW-2-50DRA+ (New Design) MODEL :

Supply Voltage (V)		5, -5	5, -5	5, -5	5, -5	5, -5
Control voltage (V)		5,0	5,0	5,0	5,0	5,0
Measurement Port	Parameter	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
Port 1	On time (ns)	19.56	19.16	19.78	19.44	19.16
	Off time (ns)	16.41	16.22	16.25	16.22	15.97
Port 2	On time (ns)	22.91	22.06	22.06	22.00	22.19
	Off time (ns)	12.59	12.56	12.44	12.19	12.50
Port 1	Rise time (ns)	4.38	3.91	4.12	4.44	4.28
	Fall time (ns)	3.91	3.47	3.84	3.62	3.44
Port 2	Rise time (ns)	3.72	2.84	2.84	2.62	3.03
	Fall time (ns)	3.38	3.38	3.28	3.09	3.50
Port 1	On Video Leakage (mV p-p)	14.20	15.40	15.60	15.30	13.80
	Off Video Leakage (mV p-p)	45.10	43.20	41.10	36.90	43.40
Port 2	On Video Leakage (mV p-p)	13.50	14.40	16.30	14.60	13.00
	Off Video Leakage (mV p-p)	42.60	39.30	41.60	38.70	42.80

Notes: a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.

IMPORTANT NOTICE

© 2017 Mini-Circuits

This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or Mini-Circuits' failure to do so.

Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefore.

In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms_of_use.html.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

Notes:

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.