Mini-Circuits

LEE Kit Test Board: Instructions for Use (AN-60-021)

Introduction

LEE Models are series of wide band amplifiers. They have different device voltages and currents (refer to catalog spec). The test board has been constructed in such a way as to make it useful for evaluating all the devices by suitable selection of bias resistor. This is done by soldering a jumper wire across one of the dashed-line positions 1 to 3 shown in Fig.1.

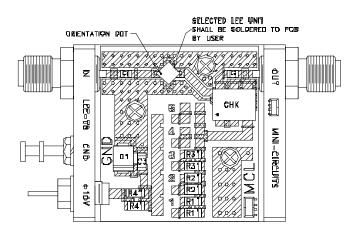
The Test Board has the following components:

Component	Value	Function
C1 & C2	39000 pF	DC blocking
L1	MCL Model # ADCH-80A	RF choke
R1	189Ω	Sets bias current for LEE-39
R2	158Ω	Sets bias current for LEE-19,-29
R3	75Ω	Sets bias current LEE-49,-59
R4	4.55Ω	Protects Zener
D1	Zener, 10V	Protects against excessive supply voltage
C3	0.1µF	Bypass capacitor; Bypass noise of supply voltage

I.	No.	Position
	LEE-19	2
	LEE-29	2
	LEE-39	1
	LEE 49	3
	LEE-59	3

Short at

Model


Procedure

Follow these steps to use the Test Board. Figure 2 shows the layout.

- 1. Solder selected LEE unit onto Test Board.
- 2. Make DC connection by soldering a jumper wire in accordance with the table, depending on the selected LEE model. All other positions should be open.
- 3. Calibrate test setup.
- 4. First, connect the RF output port of the test board to Network/Spectrum analyzer. Then, apply +10 V DC (+10.2V max). Finally, apply RF input to the test board from Network Analyzer.
- 5. Test Board has Insertion Loss due to the length of its lines, DC blocking capacitors and RF choke as shown below. Add this loss to the measured gain to get actual gain.

Frequency (GHz)	Insertion Loss (dB)
1	0.68
2	1.15
3	1.63
4	1.46
5	1.72
6	2.18
8	2.78

Fig 2. Layout of the Test Board LEE-TB

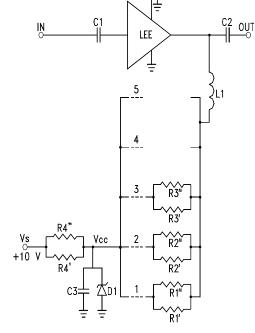


Fig 1. Schematic of the Test Board LEE - TB