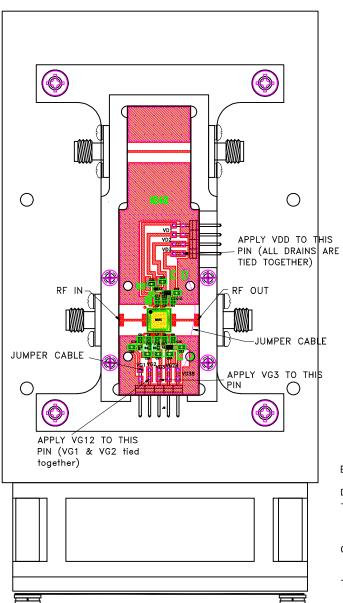
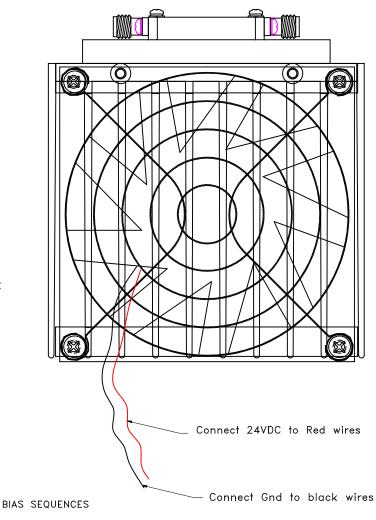

Evaluation Board and Circuit





Component	Size	Value	PartNumber	Manufacturer
R1	0402	24Ω	RK73H1ETTP24R0F	KOA SPEER ELECTRONICS
R2	0402	12Ω	RK73H1ETTP12R0F	KOA SPEER ELECTRONICS
R3	0402	0Ω	RK73Z1ETTP	KOA SPEER ELECTRONICS
C2-C9	0402	0.001µF	GRM1555C1H102JA01D	MURATA
C11-C18	0402	0.1µF	GRM155R71E104KE14D	MURATA
C19-C27	0603	1µF	06035C105KAT2A	AVX CORPORATION
L1,L2	0603	1000nH	0603AF-33NXJRW	COILCRAFT
L4	0402	56nH	0402DF-560XJRW	COILCRAFT

Notes:

- 1. 2.92mm Female Connectors.
- 2. PCB Material: Roger R04003C or equivalent,
 Dielectric constant=3.38, Thickness=0.0087±.001 inch

Drain Voltage: VDD; = 8 V

-Check true voltage at the package leads and adjust voltage from the power supply in order to compensate for possible voltage drop across DC cables and meters.

Quiescent current: IDQ12 = 1 A, IDQ3 = 1 A, Total IDQ= 2A(IDQ12+IDQ3)

Typical Gate voltage required is between -0.9 and -0.7 V.

Note:

- All Drains are tied together thru L1, L4, L2 and a jumper cable connecting top and bottom Drains.
- Gates VG1 and VG2 are tied together and Gate VG3 is separate.
- Current handling of the jumper should be at least 2A.
- It is also recommended to DC probe the unit before turning it on. Just check the DC resistance on the gate side and make sure it is about 500 KΩ.
- It is recommended to connect all grounds((2grounds for Drain & 1 grounds for gate) to the fixture, with a thick enough wire that can handle at least 4A.Pic for reference.

Bias up sequence:

- 1)Before turning on VDD, apply -2 V on VG12; and VG3 pins.
- 2)Turn on VDD to 8 V.
- 3)Increase VG12 until desired IDQ12(=1A) is reached.
- 4)Increase VG3 until desired IDQ3(=1A) is reached(Total IDQ= IDQ12+IDQ3=2A)
- 5)Turn on RF.

Bias down sequence:

- 1)Turn off RF.
- 2)Decrease VG3 down to -2 V.
- 3)Decrease VG12 to -2 V.
- 4)Turn off VDD.

Mini-Circuits

THIS DOCUMENT AND ITS CONTENTS ARE THE PROPERTY OF MINI-CIRCUITS. EXCEPT FOR USE EXPRESSLY GRANTED, IN WRITING, TO ITS VENDORS, VENDEE AND THE UNITED STATES GOVERNMENT, MINI-CIRCUITS RESERVES ALL PROPRIETARY DESIGN, USE, MANUFACTURING AND REPRODUCTION RIGHTS THERETO. THESE CONTENTS SHALL NOT BE USED, DUPLICATED OR DISCLOSED TO ANY OUTSIDE PARTY, IN WHOLE OR IN PART, WITHOUT WRITTEN PERMISSION OF MINI-CIRCUITS.

ALL DIMENSIONS ARE IN INCHES EXCEPT OTHERWISE SPECIFIED

SIZE | CODE IDENT | DRAWING NO:
A | 15542 | TBPMA69310WCX-20+

FILE: WTB-PMA69310WC-20 SCALE:

ALE: 4:

SHEET:

2 OF 2