

Bandpass Filter

ABF-7R625G+

50Ω

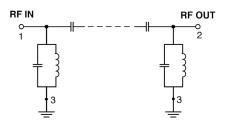
7.45 to 7.8 GHz

KEY FEATURES

- · Low Passband Insertion Loss of 1.4 dB Typ.
- · High Rejection of 54 dB Typ.
- Good Return Loss of 15 dB Typ.
- Small Size, 5.59 x 8.13 x 2.03 mm

APPLICATIONS

- Weather Radar and Satellite Communication Systems
- Test and Measurement Equipment



Generic photo used for illustration purposes only

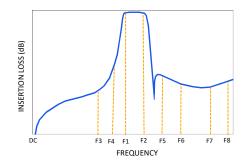
PRODUCT OVERVIEW

Mini-Circuits' Surface Mount Thin-Film filters offer low insertion loss and high rejection realized via Thin-Film on Alumina substrate, using a sputtering process that can guarantee an enhanced Q and repeatable performance. Low pass, high pass, and bandpass surface mount thin-film designs can be realized with this technology up to 40GHz in a small form factor helping customers achieve their SWaP objectives. Using our high quality thin-film manufacturing process we can guarantee repeatability on large batches of filters.

FUNCTIONAL DIAGRAM

ELECTRICAL SPECIFICATIONS^{1,2,3} AT +25°C

Parameter		F#	Frequency (GHz)	Min.	Тур.	Max.	Units
Pass Band	Center Frequency ⁴	_	_	_	7.625	_	GHz
	Insertion Loss	F1-F2	7.45 - 7.8	_	1.4	2.5	dB
	Return Loss	F1-F2	7.45 - 7.8	_	15	_	dB
Stopband Lower	Rejection	DC-F3	DC - 6	40	54	_	dB
		F3-F4	6 - 6.5	20	39	_	ав
Stopband, Upper	Rejection	F5-F6	9 - 11	22	30	_	
		F6-F7	11 - 14	43	54	_	dB
		F7-F8	14 - 18	_	50	_	


- 1. Tested on Evaluation Board P/N TB-ABF-7R625G+ with feedline losses removed by normalization of \$12 and \$21 traces to mesurement of TB thru-line.
- 2. This filter is bi-directional RF1 and RF2 ports may be interchanged, see S-Parameters for actual performance.
- 3. This component is not intended for use as a DC-blocking circuit element. In applications where DC voltage and/or current is present at either the input or output ports, external DC blocking capacitors are required.
- 4. Typical variation ± 3%.

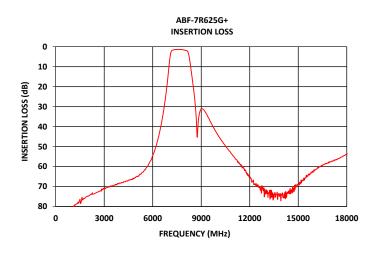
ABSOLUTE MAXIMUM RATINGS⁵

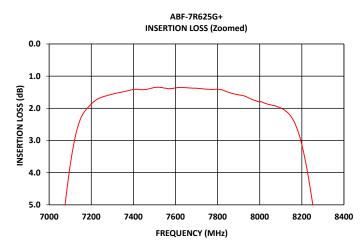
Parameter	Ratings	
Operating Temperature	-55°C to +125°C	
Storage Temperature	-55°C to +125°C	
Input Power ⁶	6W Max. at 25°C	

- 5. Permanent damage may occur if any of these limits are exceeded.
- 6. Power rating applies only to signals within the passband.

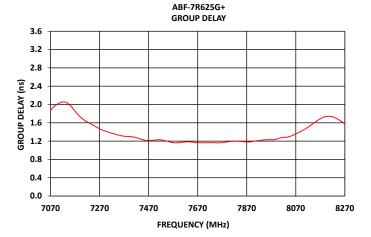
TYPICAL FREQUENCY RESPONSE AT +25°C

PAGE 1 OF 6


Bandpass Filter


ABF-7R625G+

50Ω


7.45 to 7.8 GHz

TYPICAL PERFORMANCE GRAPHS AT +25°C

Bandpass Filter

ABF-7R625G+

50Ω

7.45 to 7.8 GHz

FUNCTIONAL DIAGRAM

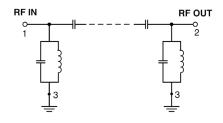
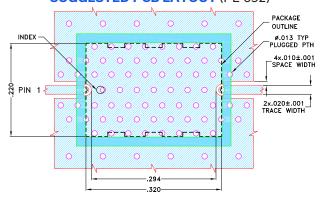



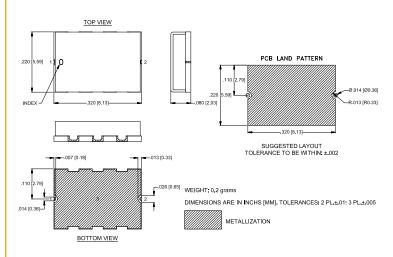
Figure 1. ABF-7R625G+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Description
RF1 ²	1	Connects to RF Input Port
RF2 ²	2	Connects to RF Output Port
GROUND	3	Connects to Ground on PCB, (See drawing PL-652)
NC	_	No connection, not used internally. See drawing PL-652 for connection to PCB

SUGGESTED PCB LAYOUT (PL-652)

NOTES:


- COPLANAR WAVEGUIDE PARAMETERS ARE SHOWN FOR ROGERS (R04350B) WITH DIELECTRIC THICKNESS .010±.0010. COPPER: 1/2 Oz. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH AND GAP MAY NEED TO BE MODIFIED.
- 2. BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.

 DENOTES PCB COPPER PATTERN WITH SMOBC (SOLDER MASK OVER BARE COPPE
- DENOTES PCB COPPER PATTERN WITH SMOBC (SOLDER MASK OVER BARE COPPER)

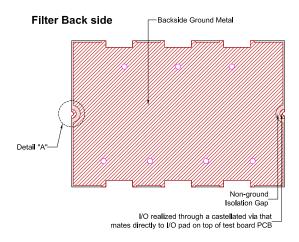
 DENOTES PCB COPPER PATTERN FREE OF SOLDERMASK

Figure 2. Suggested PCB Layout PL-652

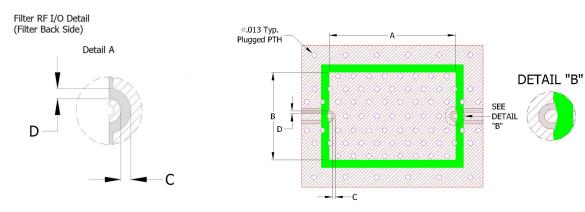
CASE STYLE DRAWING

PRODUCT MARKING*: ABF-7R625G

*Marking may contain other features or characters for internal lot control.


Bandpass Filter

ABF-7R625G+


50Ω

7.45 to 7.8 GHz

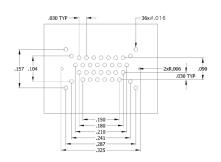
RECOMMENDED PCB LAYOUT PATTERN FOR FILTER

PCB Pattern Recommendations

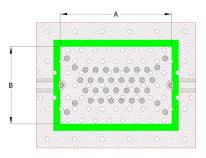
- 1) Customer PCB's ground pattern length (dimension A) can be similar to filter length.
- 2) Customer PCB's ground pattern width (dimension B) can be similar to filter width.
- 3) Dimensions C and D on Filter RF I/O detail and Customer PCB pattern can be closely match. The dimensions of C and D on the Customer PCB pattern can be slightly larger to account for component alignment tolerance (ground metal can be pulled back from RF I/O trace).
- 4) Recommend to use Solder mask at Customer PCB at outer area of filter pattern/ footprint with a clearance of about 1.25mil at each side. (Tighter registration tolerance required for solder mask)
- 5) Recommended to use Solder mask at I/O of Customer PCB as per above diagram (refer detail B).

Bandpass Filter

ABF-7R625G+


50Ω

7.45 to 7.8 GHz


COMMENTS ON COMPONENT HANDLING AND SOLDER ATTACH

- 1) Avoid using soldering iron directly to the ceramic filter. This would lead to development of crack in the component due to thermal shock.
- 2) Vacuum pick-up tool or plastic tweezers are recommended for handling the components. Extra care should be taken not to scratch the filter or metal area.
- 3) Use 2-3 mil thickness stencil plate and screen print the solder. Refer below picture for recommended stencil pattern to get the best solder attachment.

Stencil opening drawing

Solder location after screen print

- 4) Plugged ground vias in the PWB will improve attachment consistency.
- 5) Recommended to have a similar or closer test board material and thickness (refer Mini-Circuits evaluation board for details) to minimize the CTE over the temperature range.

THIN FILM SURFACE MOUNT Bandpass Filter

ABF-7R625G+

50Ω

7.45 to 7.8 GHz

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD.

CLICK HERE

	Data		
Performance Data and Graphs	Graphs		
	S-Parameter (S2P Files) Data Set (.zip file) De-embedded to device pads		
Case Style	UC2731 Lead Finish: Gold over Nickel Plate		
RoHS Status	Compliant		
Tape and Reel	TR-F003		
Suggested Layout for PCB Design	PL-652		
Evaluation Board	TB-ABF-7R625G+		
Lvaluation board	Gerber File		
Environmental Rating	ENV120		

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

