

Bandpass Filter

ABF-8R75G+

Mini-Circuits

8.6 to 8.9 GHz

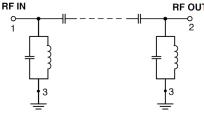
KEY FEATURES

- Low Passband Insertion Loss of 1.3 dB Typ.
- High Rejection of 50 dB Typ.
- Good Return Loss of 15 dB Typ.
- Small Size, 5.59 x 8.13 x 2.03 mm

500

APPLICATIONS

- X-Band Radar System for Naval Defense
- Test and Measurement Equipment



Generic photo used for illustration purposes only

PRODUCT OVERVIEW

Mini-Circuits' Surface Mount Thin-Film filters offer low insertion loss and high rejection realized via Thin-Film on Alumina substrate, using a sputtering process that can guarantee an enhanced Q and repeatable performance. Low pass, high pass, and bandpass surface mount thin-film designs can be realized with this technology up to 40 GHz in a small form factor helping customers achieve their SWaP objectives. Using our high quality thin-film manufacturing process we can guarantee repeatability on large batches of filters.

FUNCTIONAL DIAGRAM

ELECTRICAL SPECIFICATIONS^{1,2,3} AT +25°C

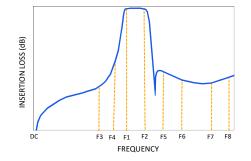
Parameter		F#	Frequency (GHz)	Min.	Тур.	Max.	Units
Pass Band	Center Frequency ⁴	_	_	_	8.75	_	GHz
	Insertion Loss	F1-F2	8.6 - 8.9	_	1.3	2.5	dB
	Return Loss	F1-F2	8.6 - 8.9	_	15	_	dB
Stopband, Lower	Rejection	DC-F3	DC - 6.5	40	50	_	٩D
		F3-F4	6.5 - 7.4	20	35	_	dB
Stopband ,Upper	Rejection	F5-F6	10.2 - 12	20	38	_	
		F6-F7	12 - 16	40	47	_	dB
		F7-F8	16 - 20	—	35	_	

1. Tested on Evaluation Board P/N TB-ABF-8R75G+ with feedline losses removed by normalization of S12 and S21 traces to mesurement of TB thru-line.

2. This filter is bi-directional RF1 and RF2 ports may be interchanged, see S-Parameters for actual performance.

3. This component is not intended for use as a DC-blocking circuit element. In applications where DC voltage and/or current is present at either the input or output ports, external DC blocking capacitors are required.

4. Typical variation ±3%.


ABSOLUTE MAXIMUM RATINGS⁵

Parameter	Ratings		
Operating Temperature	-55 °C to +125 °C		
Storage Temperature	-55 °C to +125 °C		
Input Power ⁶	1W Max. at 25°C		

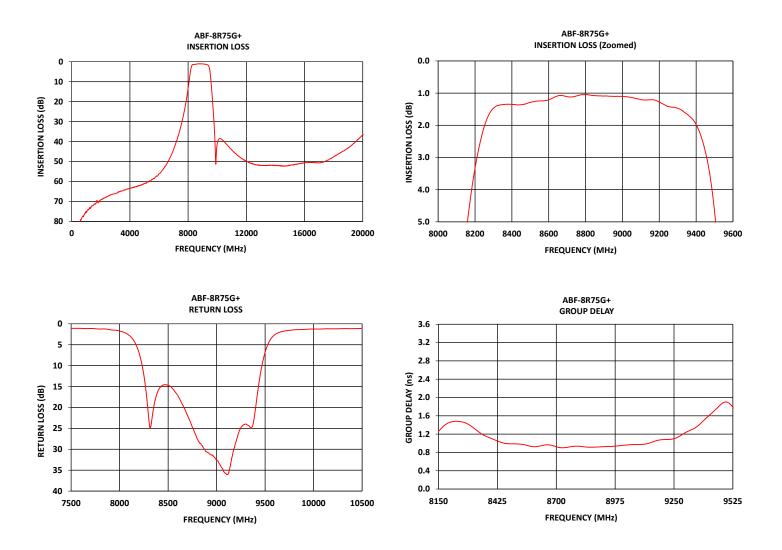
5. Permanent damage may occur if any of these limits are exceeded.

6. Power rating applies only to signals within the passband.

TYPICAL FREQUENCY RESPONSE AT +25°C

REV. A ECO-024318 ABF-8R75G+ EDU4424 URJ 250127 PAGE 1 OF 6

THIN FILM SURFACE MOUNT


Bandpass Filter

ABF-8R75G+

Mini-Circuits 50Ω

8.6 to 8.9 GHz

TYPICAL PERFORMANCE GRAPHS AT +25°C

THIN FILM SURFACE MOUNT

Bandpass Filter

ABF-8R75G+

Mini-Circuits

8.6 to 8.9 GHz

FUNCTIONAL DIAGRAM

50Ω

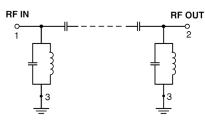
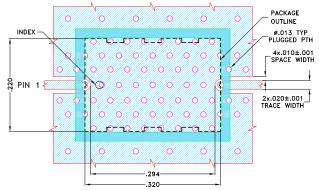
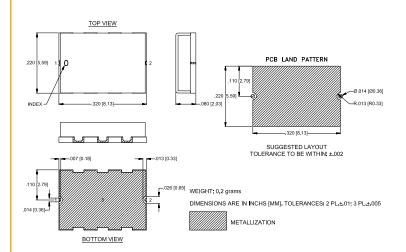



Figure 1. ABF-8R75G+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Description	
RF1 ²	1	Connects to RF Input Port	
RF2 ²	2	Connects to RF Output Port	
GROUND	3	Connects to Ground on PCB, (See drawing PL-652)	
NC	_	No connection, not used internally. See drawing PL-652 for connection to PCB	

SUGGESTED PCB LAYOUT (PL-652)



NOTES:

 COPLANAR WAVEGUIDE PARAMETERS ARE SHOWN FOR ROGERS (R04350B) WITH DIELECTRIC THICKNESS .010±.0010. COPPER: 1/2 02. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH AND GAP MAY NEED TO BE MODIFIED.
BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.

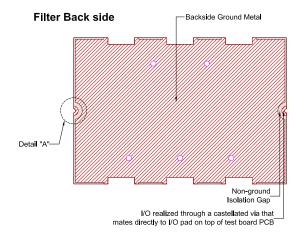
DENOTES PCB COPPER PATTERN WITH SMOBC (SOLDER MASK OVER BARE COPPER)

Figure 2. Suggested PCB Layout PL-652

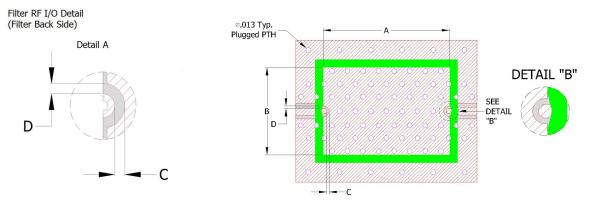
CASE STYLE DRAWING

PRODUCT MARKING*: ABF-8R75G

*Marking may contain other features or characters for internal lot control.


Bandpass Filter

ABF-8R75G+


 \square Mini-Circuits 50 Ω

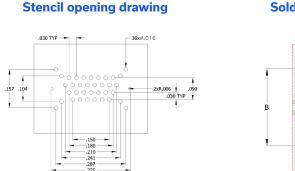
8.6 to 8.9 GHz

RECOMMENDED PCB LAYOUT PATTERN FOR FILTER

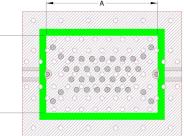
PCB Pattern Recommendations

- 1) Customer PCB's ground pattern length (dimension A) can be similar to filter length.
- 2) Customer PCB's ground pattern width (dimension B) can be similar to filter width.
- 3) Dimensions C and D on Filter RF I/O detail and Customer PCB pattern can be closely match. The dimensions of C and D on the Customer PCB pattern can be slightly larger to account for component alignment tolerance (ground metal can be pulled back from RF I/O trace).
- 4) Recommend to use Solder mask at Customer PCB at outer area of filter pattern/ footprint with a clearance of about 1.25mil at each side. (Tighter registration tolerance required for solder mask)
- 5) Recommended to use Solder mask at I/O of Customer PCB as per above diagram (refer detail B).

Mini-Circuits



Mini-Circuits


8.6 to 8.9 GHz

COMMENTS ON COMPONENT HANDLING AND SOLDER ATTACH

- 1) Avoid using soldering iron directly to the ceramic filter. This would lead to development of crack in the component due to thermal shock.
- 2) Vacuum pick-up tool or plastic tweezers are recommended for handling the components. Extra care should be taken not to scratch the filter or metal area.
- 3) Use 2-3 mil thickness stencil plate and screen print the solder. Refer below picture for recommended stencil pattern to get the best solder attachment.

Solder location after screen print

- 4) Plugged ground vias in the PWB will improve attachment consistency.
- 5) Recommended to have a similar or closer test board material and thickness (refer Mini-Circuits evaluation board for details) to minimize the CTE over the temperature range.

Bandpass Filter

Mini-Circuits

50Ω

8.6 to 8.9 GHz

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD.

CLICK HERE

	Data		
Performance Data and Graphs	Graphs		
	S-Parameter (S2P Files) Data Set (.zip file) De-embedded to device pads		
Case Style	UC2731 Lead Finish: Gold over Nickel Plate.		
RoHS Status	Compliant		
Tape and Reel	TR-F003		
Suggested Layout for PCB Design	PL-652		
Evaluation Board	TB-ABF-8R75G+		
	Gerber File		
Environmental Rating	ENV120		

NOTES

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

