RF Transformer

ADT2-162T+

 50Ω 20 to 1600 MHz

The Big Deal

- 1W RF power handling
- Low unbalance, 0.4 dB, 3°
- Small size, 0.27 x 0.31 x 0.22"

CASE STYLE: CD636

Product Overview

Mini-Circuits' ADT2-162T+ is a surface-mount balanced-to-balanced transformer with a secondary/primary impedance ratio of 2:1. This model covers the 20 to 1600 MHz band with low insertion loss (1.2 dB typ.) as well as low phase unbalance (3°) and amplitude unbalance (0.4 dB). The unit comes enclosed in a miniature, leadless plastic package measuring just 0.27 x 0.31 x 0.22", ideal for dense circuit board layouts.

Key Features

Feature	Advantages		
Wideband, 20 to 1600 MHz	Supports a wide range of applications including VHF/UHF, cellular, PCS and more.		
Low insertion loss, 1.2 dB typ.	Good transmission of signal power from input to output.		
1W RF power handling	Supports a wide range of power requirements.		
Low phase and amplitude unbalance, 3°, 0.4 dB	Low phase and amplitude unbalance can improve a system's electromagnetic compatibility by rejecting unwanted common-mode noise		
Small footprint, 0.27 x 0.31 x 0.22"	Accommodates tight space requirements for dense PCB layouts.		

Notes

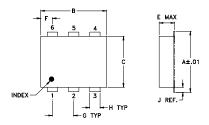
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

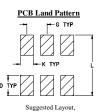
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

RF Transformer

20 to 1600 MHz

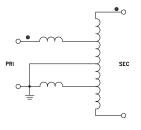

Maximum Ratings


Operating Temperature	-40°C to 85°C
Storage Temperature	-55°C to 100°C
RF Power	1.0W
Permanent damage may occur if any	of these limits are exceeded.

Pin Connections

PRIMARY DOT	3
PRIMARY	1
SECONDARY DOT	6
SECONDARY	4
SECONDARY CT	5
NOT USED	2

Outline Drawing


Tolerance to be within + 002

Outline Dimensions (inch)

G	F	Ε	D	С	В	Α
.100	.055	.162	.100	.220	.310	.272
2.54	1.40	4.11	2.54	5.59	7.87	6.91
wt			L	K	J	Н
grams			.300	.065	.026	.030
0.25			7.62	1.65	0.66	0.76

Demo Board MCL P/N: TB-430+

Config. P1

Features

- leaded surface mount
- wideband frequency 20-1600 MHz
- excellent amplitude balance, 0.4 dB typ. and phase unbalance, 3 deg. typ.

Applications

- VHF/UHF
- · balanced amplifiers
- info structure
- A/D and D/A converter
- cellular

Transformer Electrical Specifications@25°C

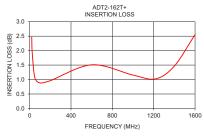
	CARINI CIRCUIES
	· ·
	of the state of th
4	1
	No.

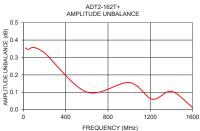
ADT2-162T+

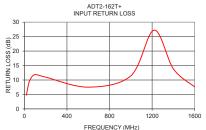
Generic photo used for illustration purposes only

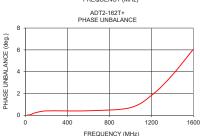
CASE STYLE: CD636

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications


	Available Tape and Reel at no extra cost
Reel Size	Devices/Reel
7"	20, 50, 100, 200
13"	500.1000


-					
Parameter	Frequency (MHz)	Min.	Тур.	Max.	Unit
Impedance Ratio (secondary / primary)			2		
Frequency Range		20		1600	MHz
Insertion Loss* (average)	50 - 1250 25 - 1400 20 - 1600		0.5 1.2 2.0	1.0 2.0 3.0	dB
Amplitude Unbalance ±	50 - 1250 25 - 1400 20 - 1600		0.4 0.5 0.6	0.75 0.85 0.95	dB
Phase Unbalance ±	50 - 1250 25 - 1400 20 - 1600		2 2.5 3.0	4 5 7	Degree
Input Return Loss	20-1600	_	12	_	dB
Common mode rejection	20-1250 1250-1600	20 18	25 22	_	dB


^{*} Insertion Loss is referenced to mid-band loss, 1.0 dB typ.


Typical Performance Data

FREQUENCY (MHz)	INSERTION LOSS (dB)	INPUT R. LOSS (dB)	AMPLITUDE UNBALANCE (dB)	PHASE UNBALANCE (Deg.)	
20	2.47	4.74	0.35	0.06	
25	1.92	5.94	0.35	0.03	
50	1.07	9.79	0.35	0.07	
100	0.88	11.86	0.36	0.25	
200	0.96	10.98	0.33	0.41	
600	1.51	7.53	0.10	0.42	
1000	1.15	11.44	0.16	0.70	
1218	1.02	27.23	0.06	1.96	
1400	1.47	13.83	0.11	3.70	
1600	2.55	7.63	0.01	6.06	

Notes

**PREQUENCY (MHz)

**PREQ