Low Pass Filter

ALF-12000+

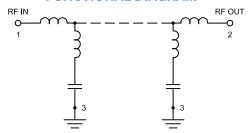
50Ω DC to 12 GHz

KEY FEATURES

- Low Passband Insertion Loss of 0.5 dB Typ.
- High Rejection of 47 dB Typ.
- Good Return Loss of 17 dB Typ.
- Small Size, 5.59 x 8.13 x 2.03 mm

Sameran Park

Generic photo used for illustration purposes only


APPLICATIONS

- · Telecommunications and broad band wireless systems.
- · Military applications.
- SATCOM modems.
- Test and measurements

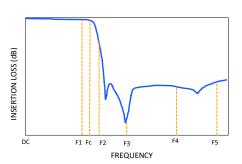
PRODUCT OVERVIEW

Mini-Circuits' Surface Mount Thin-Film filters offer low insertion loss and high rejection realized via Thin-Film on Alumina substrate, using a sputtering process that can guarantee an enhanced Q and repeatable performance. Low pass, high pass, and bandpass surface mount thin-film designs can be realized with this technology up to 40GHz in a small form factor helping customers achieve their SWaP objectives. Using our high quality thin-film manufacturing process we can guarantee repeatability on large batches of filters.

FUNCTIONAL DIAGRAM

ELECTRICAL SPECIFICATIONS^{1,2} AT +25°C

Parameter		F#	Frequency (GHz)	Min.	Тур.	Max.	Units
Pass Band	Insertion Loss	DC-F1	DC - 12	_	0.5	1.2	dB
	Freq. Cut-Off ³	Fc	13.95	_	3	_	dB
	Return Loss	DC-F1	DC - 12	_	17	_	dB
		F2-F3	15.6 - 17	25	38	_	
Stop Band	Rejection	F3-F4	17 - 20	35	47	_	dB
		F4-F5	20 - 25	_	30	_	


- 1. Tested in Evaluation Board P/N TB-ALF-12000+ with feedline losses removed by normalization of S12 and S21 traces to measurement of TB thru-line.
- 2. This component should not be used as a DC-block. In applications where DC voltage and/or current is present at either the input or output ports, external DC blocking capacitors are required

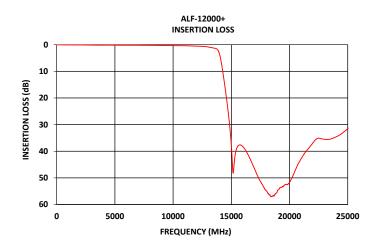
ABSOLUTE MAXIMUM RATINGS⁴

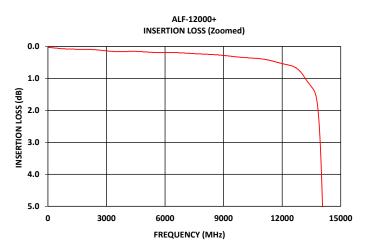
Parameter	Ratings
Operating Temperature	-55°C to +125°C
Storage Temperature	-55°C to +125°C
Input Power ⁵	12 W Max. at 25°C

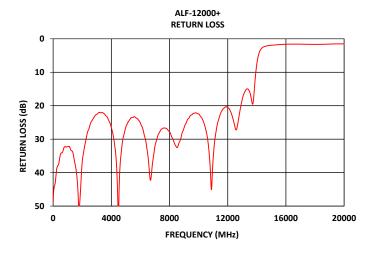
- 4. Permanent damage may occur if any of these limits are exceeded.
- 5. Power rating applies only to signals within the passband. Derated power at +125 degC is 4 W.

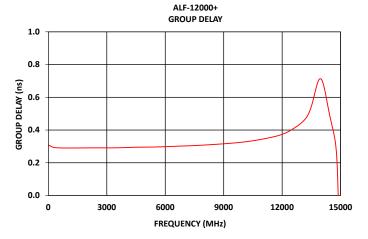
TYPICAL FREQUENCY RESPONSE

REV. OR ECO-021047 ALF-12000+ EDU4653 URJ


^{3.} Typical variation ±3%


Low Pass Filter


ALF-12000+


50Ω DC to 12 GHz

TYPICAL PERFORMANCE GRAPHS AT +25°C

Low Pass Filter

ALF-12000+

50Ω DC to 12 GHz

FUNCTIONAL DIAGRAM

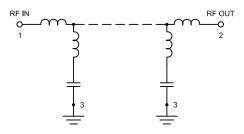
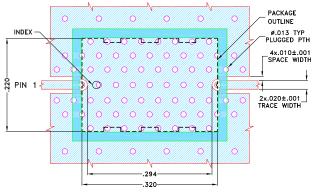
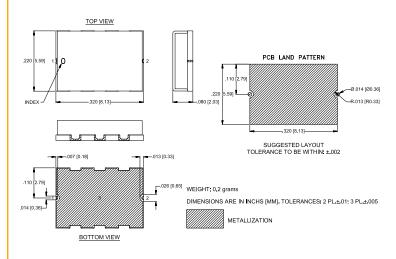



Figure 1. ALF-12000+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Description
RF1	1	Connects to RF Input Port
RF2	2	Connects to RF Output Port
GROUND	3	Connects to Ground on PCB, (See drawing PL-652)
NC	_	No connection, not used internally. See drawing PL-652 for connection to PCB

SUGGESTED PCB LAYOUT (PL-652)



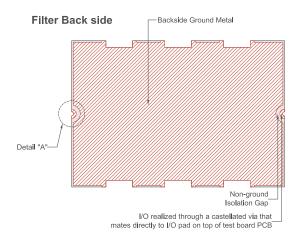
NOTES:

- COPLANAR WAVEGUIDE PARAMETERS ARE SHOWN FOR ROGERS (R04350B) WITH DIELECTRIC THICKNESS .010±.0010. COPPER: 1/2 02. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH AND GAP MAY NEED TO BE MODIFIED.
 BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.
- DENOTES PCB COPPER PATTERN WITH SMOBC (SOLDER MASK OVER BARE COPPER)
 DENOTES PCB COPPER PATTERN FIRE OF SOLDERMASK

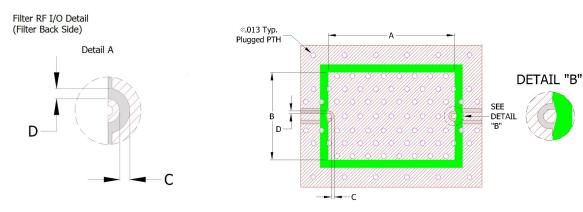
Figure 2. Suggested PCB Layout PL-652

CASE STYLE DRAWING

PRODUCT MARKING*: ALF-12000


*Marking may contain other features or characters for internal lot control.

Low Pass Filter


ALF-12000+

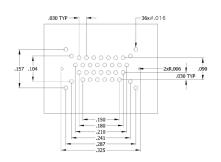
50Ω DC to 12 GHz

RECOMMENDED PCB LAYOUT PATTERN FOR FILTER

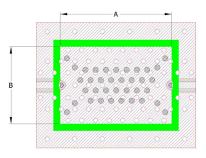
PCB Pattern Recommendations

- 1) Customer PCB's ground pattern length (dimension A) can be similar to filter length.
- 2) Customer PCB's ground pattern width (dimension B) can be similar filter width.
- 3) Dimensions C and D on Filter RF I/O detail and Customer PCB pattern can be closely match. The dimensions of C and D on the Customer PCB pattern can be slightly larger to account for component alignment tolerance (ground metal can be pulled back from RF I/O trace).
- 4) Recommend to use Solder mask at Customer PCB at outer area of filter pattern/ footprint with a clearance of about 1.25mil at each side. (Tighter registration tolerance required for solder mask)
- 5) Recommended to use Solder mask at I/O of Customer PCB as per above diagram (refer detail B).

Low Pass Filter


ALF-12000+

 50Ω DC to 12 GHz


COMMENTS ON COMPONENT HANDLING AND SOLDER ATTACH

- 1) Avoid using soldering iron directly to the ceramic filter. This would lead to development of crack in the component due to thermal shock.
- 2) Vacuum pick-up tool or plastic tweezers are recommended for handling the components. Extra care should be taken not to scratch the filter or metal area.
- 3) Use 2-3 mil thickness stencil plate and screen print the solder. Refer below picture for recommended stencil pattern to get the best solder attachment.

Stencil opening drawing

Solder location after screen print

- 4) Plugged ground vias in the PWB will improve attachment consistency.
- 5) Recommended to have a similar or closer test board material and thickness (refer Mini-Circuits evaluation board for details) to minimize the CTE over the temperature range.

Low Pass Filter

50Ω DC to 12 GHz

ALF-12000+

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD.

CLICK HERE

	Data		
Performance Data and Graphs	Graphs		
	S-Parameter (S2P Files) Data Set (.zip file) De-embedded to device pads		
Case Style	UC2731 Lead Finish: Gold over Nickel plate.		
RoHS Status	Compliant		
Tape and Reel	TR-F003		
Suggested Layout for PCB Design	PL-652		
Evaluation Board	TB-ALF-12000+		
Evaluation board	Gerber File		
Environmental Rating	ENV120		

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

