
AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
 This document and its contents are the property of Mini-Circuits. Page 3 of 28

ISC-2425-25+
Quick Start Companion
Software version: 1.1.1

AN-50-008

www.minicircuits.com

http://www.minicircuits.com/

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 2 of 26

1. Introduction ... 1
2. Graphical User Interface .. 2

2.1 GUI Layout .. 2

2.2 Using the GUI .. 3

3. Source Code ... 5
The source code of the GUI consists of the following files: ... 5

3.1 Core Concepts ... 5

3.1.1 Slots and signals .. 5

3.1.2 MainWindow class... 5

3.1.3 QDebug .. 6

3.2 Constructor ... 6

3.2.1 Preparing the serial port ... 6

3.2.1.1 Error handling .. 7

3.2.1.2 Setting the port name .. 7

3.2.2 Setting up port polling ... 8

3.2.2.1 Updating the port list ... 9

3.2.3 UI start-up state... 10

3.3 Button management – Serial Connections ... 11

3.3.1 Ports comboBox .. 11

3.3.2 Connect ... 11

3.3.3 Disconnect ... 12

3.3.4 Auto-Detect & Connect ... 12

3.4 Button management – Command Buttons ... 13

3.4.1 WriteRead .. 14

3.4.2 WriteRead_OK ... 16

3.4.3 Printing communications to the log .. 16

3.5 Sweeping ... 17

3.5.1 Executing a sweep and parsing the data ... 18

3.5.2 Drawing a plot from the sweep data ... 20

3.5.3 Plot notation buttons .. 21

3.6 About button .. 22

Table of Contents

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 3 of 26

1. Introduction
The Quick Start Companion application is a simple graphical user interface (GUI) application that can be used side-by-
side with the Quick Start Guide. More specifically, it’s best used alongside the latter half of the guide, which focuses on the
command line interface.

This document serves to provide additional information about the codebase of the Quick Start Companion application
offered as an example for software integration of the ISC-2425-25+ small signal generator.

The Quick Start Companion application has been created using the Qt framework for C++. It is

recommended to interact with the source code using the Qt Creator application.

Qt is available for download here: https://www.qt.io/download

http://www.qt.io/download
http://www.qt.io/download

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 4 of 26

2.1 GUI Layout
The GUI can be divided up into 4 sections

① Top bar
Contains information for establishing a connection with the ISC board. It also contains the ‘about’ button.

② Command buttons section
Contains buttons and lineEdits for sending commands to the ISC board.

③ Sweep section
Contains buttons and lineEdits for executing a sweep with the ISC board. Also contains a plot area to display the results of
the sweep, and two additional buttons to switch between two ways to plot the data.

④ Communications log
Displays all the inbound and outbound communication between the GUI and the ISC board.

2. The Graphical User Interface
Explanation of the GUI

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 5 of 26

2.2 Using the GUI
At startup of the GUI, only the top bar is enabled, everything else disabled and greyed out. The user is required to establish
communication with an ISC board before continuing.

There are two ways to go about this:

Manual
 1. Find the serial port of your ISC board (for example via the device manager) and manually select the name of its

port from the Ports comboBox.

 2. Press the ‘Connect’ button to try opening the connection.

Automatic
 Simply press the ‘Auto-Detect & Connect’ button in the top left corner. The GUI will connect to the first ISC board it

detects. If no ISC board is detected the GUI will display a pop-up message and exit.

After connecting successfully to an ISC, the rest of the GUI becomes available.

The command buttons are laid out in an order meant to intuitively align with the instructions of the Quick Start Guide.

The following buttons are present:

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 6 of 26

Button Command String Comment

Get Identity $IDN,0
Get Version $VER,0
Get Status $ST,0

Get Status (verbose) $ST,0,1 The extra argument tells the ISC board to return a verbose list of
the errors instead of an error code.

Clear Errors $ERRC,0
Get Frequency $FCG,0
Set Frequency $FCS,0,? Fills ? with value(s) from the adjacent lineEdit(s).

Get PA Power
(measurement) $PPG,0
Get Power (setpoint) $PWRG,0 Fills ? with value(s) from the adjacent lineEdit(s).

Set Power $PWRS,0,? Fills ? with value(s) from the adjacent lineEdit(s).

Configure DLL $DLES,0,?,?,?,?,?,?
DLL Enable $DLES,0,1
DLL Disable $DLES,0,0
RF Enable $ECS,0,1
RF Disable $ECS,0,0
Sweep (dBm) $SWPD,0,?,?,?,?,0 Fills ? with value(s) from the adjacent lineEdit(s).

When a button is pressed, the associated command string is sent to the ISC board, after which it returns a reply.

Every command that is sent and received is displayed in the communications log on the left side of the GUI.

 Outbound communication (to the ISC) is marked with a ‘>’ symbol
 Inbound communication (from the ISC) is marked with a ‘<’ symbol

It’s the user’s responsibility to interpret the messages that go back and forth, according to available information
from the Quick Start Guide and Command Language Manual.

Notably the Sweep command has some additional handing. The results of the ISC’s reply are parsed and visualized in a
graph/plot at the bottom of the GUI.

The two buttons right of the plotting area which read ‘Reflection graph (Linear)’ and ‘S11 graph (Logarithmic)’ will redraw the
data of the plot in linear (%) or logarithmic (dB) notation respectively.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 7 of 26

File Description

QSComp.pro Project file which is opened with Qt creator.

main.cpp Main file which starts the GUI.

mainwindow.h Header of the GUI code.

mainwindow.cpp Implementation of the GUI code.

mainwindow.ui File generated with the UI designer that describes the layout of the UI.

qcustomplot.h Header of plotting library used for sweep.

qcustomplot.cpp Implementation of plotting library used for sweep.

about.qrc A Qt resource file.

about.txt Text file with contents for the 'about' button.

Among these files, the only ones of real interest are mainwindow.cpp and its header file mainwindow.h, as they contain
all the interactions between the GUI and the ISC board.

3.1 Core Concepts
The following are a few core concepts the reader should keep in mind while looking at the code.

3.1.1 Slots and signals
The Qt framework has a mechanism called signals and slots, which allows different objects to communicate with one
another. One object ‘emits’ a signal, and another object reacts to it via a slot function. This is relationship is typically set
up through the ‘connect’ function.

Qt Signals & Slots documentation: https://doc.qt.io/qt-5/signalsandslots.html

3.1.2 MainWindow class
The GUI is contained within mainwindow.cpp and mainwindow.h and mainwindow.ui.

mainwindow.ui is simply a file that describes layout of the GUI form and contains things like the names of UI elements.
All the interactions, both UI and background stuff, are handled by the MainWindow class of mainwindow.h and -cpp.

Notably UI elements (e.g., buttons) also emit signals which are connected to the respective slot functions, though for
these UI elements Qt auto-generates files at compilation which describe those particular connections.

3. Source Code
The source code of the GUI consists of the following files:

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 8 of 26

3.1.3 QDebug
Several lines can be found throughout the code that reference the QDebug class of Qt

These lines simply output text and/or values to the console/terminal during runtime. They are only there for the
convenience of the developer, and can otherwise be ignored entirely.

3.2 Constructor
The constructor is executed upon the instantiation of the MainWindow class at startup. It sets everything up for use in
the rest of the program.

3.2.1 Preparing the serial port
To establish communication between the software and ISC board, the QSerialPort class is used from the Qt framework.

Qt QSerialPort documentation: https://doc.qt.io/qt-5/qserialport.html

The object pointer of the QSerialPort ‘SG_port’ for the signal generator is declared in mainwindow.h:

This involves:

 Setting up error handling (line 24)
 Setting up the serial parameters (baudrate, databits, etc.) (line 27-31)
 Setting up the port name. (line 34-35)

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 9 of 26

3.2.1.1 Error handling
The Qt framework has a mechanism called signals and slots, which allows different objects to communicate with one
another. In this case it is used for the error-handling of the serial port.

Here the ‘errorOccurred’ signal of the QSerialPort ‘SG_port’ is connected to the slot function ‘serialport_
error_handler’ of ‘this’ instance of the MainWindow class.

The error handler function looks like this:

If the error type of the serial port is ‘NoError’ or ‘TimeoutError’, it is ignored and the error handler function exits early.
NoError means everything is all good, and the TimeoutError can occasionally be a false alarm raised by function like
Sweep, which simply requires a bit of time to respond.

All other errors spawn a pop-up message with the error and close the serial port. This is done by re-using the
‘on_pushButton_disconnect_clicked’ slot function which would normally be called when pressing the disconnect button
in the GUI.

3.2.1.2 Setting the port name
Setting the default port name is a two-part action.

First a list of ports is generated by the ‘update_port_list’ function. This fills the ports comboBox in the GUI with viable
port names. This is covered in detail in chapter 3.2.2.1 – Updating the port list .

Then, as a default value, the first item in the comboBox is set as the (placeholder) port name parameter for the serial
port, so that it has something to work with from the get-go. This part re-uses the on_comboBox_ ports_activated slot
function, which is called whenever the user chooses an item in the comboBox. This is covered in a bit more detail in
chapter 3.3.1 - Ports comboBox.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 10 of 26

3.2.2 Setting up port polling
The next part of the constructor sets up the port polling of the GUI.

The name of a serial port is something that is flexible. For example, if two signal generators are plugged into the same
computer, each will have a different name/number, and the user should be able to connect to the particular one they
need.

To account for devices appearing and disappearing, the list of available ports is kept up to date continuously using a timer
(QTimer object).

Qt QTimer documentation: https://doc.qt.io/qt-5/qtimer.html

The timer ‘port_poll_timer’ has its timeout signal connected to the update_port_list slot function.

Afterwards, the timer is started with the value POLL_TIMER provided as the argument.

‘POLL_TIMER’ is defined near the top of mainwindow.cpp as 1000. So, the timer operates at intervals of 1000ms, or 1
second. Every time it expires, the timeout() signal is emitted, which triggers the update_port_ list slot function.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 11 of 26

3.2.2.1 Updating the port list
This is the update_port_list slot function:

This function collects a list of available port information ‘port_info’ and compares it against the previous set of port
information stored in ‘port_info_old’. If a difference is detected in the number of ports or the names of the ports, the
boolean ‘ports_changed’ is set to true.

If ‘ports_changed’ is true, the contents of the ports comboBox in the UI is updated (cleared and repopulated) with the new
list of names from port_info.

This approach lets the list stay up to date as needed, but avoids interrupting the user experience by constantly resetting
the contents of the comboBox while the user is interacting with it.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 12 of 26

3.2.3 UI start-up state
The last part of the constructor configures the (visible) state of the GUI at startup.

The tab length of the communications log is set to 20 pixels width, purely for aesthetic reasons. More

importantly, various parts of the GUI are enabled or disabled.

At start-up, the connection to the signal generator is not yet opened, so the connection buttons are enabled (and the
disconnect button is disabled) using the show_connection_buttons function:

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 13 of 26

And all the buttons for sending commands (and pretty much every other part of the UI) are disabled using the
show_main_buttons function, which disables all the UI elements residing within a container in the UI called ‘frame’:

This results in a start-up state of the GUI that looks like this:

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 14 of 26

3.3 Button management – Serial Connections
The top of the GUI contains 4 UI elements related to serial connections:

 Ports comboBox

 Connect button

 Disconnect button

 Auto-Detect & Connect button

3.3.1 Ports comboBox
Whenever the user chooses an item in the comboBox, this function reconfigures the port name parame- ter of
QSerialPort ‘SG_port’.

3.3.2 Connect
When the connect button is pressed, the GUI attempts to open the configured serial port.

If the port is opened successfully, the state of the GUI is updated. The connection buttons are disabled (disconnect is
enabled), and all the other elements of the UI are enabled for the user to interact with.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 15 of 26

The resulting state of the GUI looks like this:

3.3.3 Disconnect
When the disconnect button is pressed, the serial port connection is closed, and the UI is reverted to the same state as
at start-up.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 16 of 26

3.3.4 Auto-Detect & Connect
The auto-detect button automatically recognizes and connects to a signal generator board.

First the selection of the ports comboBox is updated with a value returned from the function ‘autodetect_ SG_port’.
Then the ‘on_pushButton_connect_clicked’ function is reused to connect to the port.

The selection of the ports occurs using the ‘autodetect_SG_port’ function:

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 17 of 26

Similarly, to the update_port_list function, this function also collects a list of ports. However, the difference is that this
one filters the contents.

An ISC signal generator board can be detected by looking at its ‘vendor identifier’ and ‘product identifier’. For this board
model, the values of these identifiers are 8137 and 131 respectively.

These ID’s can be retrieved from the properties menu of the device, in the device manager:

If no board is detected and the ‘infolist’ comes up empty after going through all the available ports, the GUI pops an error
message that no board was detected and promptly exits.

 Remark: This is done to keep things simple. Were an empty list to be returned instead, it would result in out-of-scope
list references in other parts of the code and the software would crash.

Assuming a viable signal generator port was found, infolist is returned, and the first entry in the list is used to update the
comboBox selection and port name of the SG_port.

3.4 Button management – Command Buttons
Each button in the GUI has a slot function which is triggered by the respective ‘clicked’ signal. When the button is
clicked a command string is sent to the ISC board through the serial port interface.

For example when the ‘Get Frequency’ button is pressed, the string “$FCG,0” is sent.

Some commands require additional input from the user. For example, the ‘Set Frequency’ command takes a numeric
input for the desired frequency value.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 18 of 26

When the ‘Set Frequency’ button is pressed, the string “$FCS,0,” is concatenated with the contents of the lineEdit
‘lineEdit_frequency” and is sent to the ISC board. E.g., $FCS,0,2450.

Most commands reply with only one line. For example:

 > $IDN,0

< $IDN,1,Mini-Circuits,ISC-2425-25+,MN0003402112

 > $PWRG,0

< $PWRG,1,10.000000

 > $ECS,0,1

< $ECS,1,OK

However, a small handful of commands return more than a single line. For example, the verbose version of the ‘Status
Get’ command:

 > $ST,0,1

< $ST,1,RESET_DETECTED

< $ST,1,EXTERNAL_SHUTDOWN_DETECTED

< $ST,1,OK

To handle these two different types of responses, there are two separate functions for sending commands and receiving
responses:

 writeRead

 writeRead_OK

3.4.1 writeRead
The ‘writeRead’ function is used for commands with single-line responses. Here’s a

breakdown down of the function:

1. It takes the command string for the signal generator as an argument, checks whether the SG_port is still open at all
before continuing, and then prepares a QString ‘rx’ in which to store a response to the command.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 19 of 26

2. It attempts to write the command string to the ISC through the serial port interface, and waits up to 250ms for an
indication that the transmission has begun. If the transmission has begun, the outbound message is also printed in the
communications log.

Notably a ‘carriage return’ (\r) and ‘line feed’ (\n) are appended to the command string when writing it out. These are
treated as an end of message indicator by the ISC board. Without them the board would wait indefinitely for additional
inputs and not respond.

3. In a while loop, the function awaits a response by the ISC that contains “\r\n”, indicating the end of the response. The
function waits for up to 500ms at a time until SG_port indicates with a ‘readyRead’ signal that there is something to be
read from the read buffer of SG_port. When the SG_port is ready to be read (or if the timer expires), the contents of the
read buffer are appended to the QString ‘rx’. ‘rx’ is then parsed for a possible error, indicated by an “ERR” string. The
open state of SG_port is also checked to make sure the serial port is still working while it is stuck in the while loop. If it
turns out there’s an error response from the SG or the serial port has closed for some reason, the while loop is broken
prematurely, otherwise it keeps looping till a “\r\n” is detected in the contents of rx.

4. After breaking out of the while loop, the response string is printed in the communications log, and ‘rx’ is returned to
the function which called writeRead, allowing further interaction with the response string if necessary.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 20 of 26

3.4.2 writeRead_OK
The writeReady_OK function is used for commands with multi-line responses. Commands with multi-line responses
return several lines in one go, each ending with “\r\n” and finally finish up with an “OK\r\n”.

The function ‘writeRead_OK’ behaves largely identical to ‘writeRead’. The only noteworthy difference is in the loop that
waits for a complete response from the ISC board. In this case the function waits until the response string rx contains the
string “OK\r\n”, indicating the multi-line response has been completed.

3.4.3 Printing communications to the log
The GUI logs all the communication to and from the ISC board.

This occurs in the writeRead commands on the lines that call the print_message function.

 print_message(direction::outbound, tx);

 print_message(direction::inbound, rx);

The print_message function simply appends to the tx and rx lines to the contents of the text editor on the left side of
the GUI.

It takes a direction argument (dir), and a string argument (text).

If the direction of the message is inbound from the ISC board, “<\t” is inserted before the string, as well as after the
“\r\n” of each line of the response (if there are multiple), except the last.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 21 of 26

If the direction of the message is outbound to the ISC board, “>\t” is inserted before the string. Outbound

commands are always a single line, so that is sufficient.

These are purely cosmetic edits to make the transmissions a bit easier to visually parse for the user.

3.5 Sweeping
Sweeping is one of the more complicated features of the ISC board.

It gives the user a glimpse at the matching quality of their load across a range of frequencies.

The ‘Sweep (dBm)’ button performs a sweep using dBm as the preferred unit of power for both inputs and outputs. This is
done with the $SWPD command, which also takes arguments from the adjacent lineEdits.

For an improved experience the user is provided with both a dBm and watt input, though only the dBm value is
actually used in the end. When the value in either lineEdit changes, the other is also updated:

This uses a pair of conversion functions provided for convenience.

convert_dbm_to_watt: A value in dBm is provided as the argument, and a value in watt is returned.

convert_watt_to_dbm: A value in dBm is provided as the argument, and a value in dBm is returned.

The actions of the sweep button are two-part:

 Execute the sweep and parse the resulting data

 Draw a plot from the data (If the sweep was successful)

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 22 of 26

3.5.1 Executing a sweep and parsing the data
Execution and parsing of the sweep data occurs in the ‘SWP_run_sweep’ function.

First the sweep command is sent to the signal generator. The writeRead_OK function is used and the response, which
potentially spans hundreds of lines depending on the provided parameters, is stored as one long string in QString
‘SWP_raw_data’.

As mentioned before, the $SWPD command is used, which takes power in dBm as an argument from ‘lineEdit_SWP_4’.
The power in watt from ‘lineEdit_SWP_5’ goes unused, and is only there for the convenience of the user.

Next the response’s contents are checked. If the response contains the strings “$SWPD,” and “OK\r\n”, it indicates the
sweep has completed successfully.

If the sweep is successful, the data gets divided up into more manageable chunks.

This is done by splitting the giant Qstring ‘SWP_raw_data’ at all of the “\r\n” bits, and storing each line as an individual
item into a QStringList called ‘SWP_data’. The two last items in the list (OK message and an empty line) are promptly
deleted, as they are of no further use, and would only get in the way when parsing the data.

If the sweep fails (for example because of an invalid input in the sweep lineEdits), it instead pops an error message and
returns false, letting the program know it shouldn’t try to draw a plot from this data.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 23 of 26

The data from the sweep will be saved in a set of QVectors of the type double. Qt

QVector documentation: https://doc.qt.io/qt-5/qvector.html

 Remark: This data will be reused by other functions, so these QVectors have been declared ahead of time in
mainwindow.h, making them persistent and accessible to any function in the MainWindow class.

The QVectors are resized according to the number of lines available for parsing in ‘SWP_data’.

Next the string data from the QStringList ‘SWP_data’ is processed. Every item from ‘SWP_data’ is done one by one.

The contents of each line, which look something like “$SWP,1,2400.00,47.23,35.53\r\n”, are split at the comma
character and stored in a new QStringList called ‘data’.

Starting from 0, items number 2,3 and 4 of QStringList ‘data’ contain the frequency, forward power, and reflected power
respectively. These values are converted from QStrings to doubles and stored at appropriate index in their respective
QVectors

From the forward and reflected power measurements the RF matching values are also calculated.

 The S11 values are calculated in dB.

 The reflection values, after converting the power values from dBm to watts, are calculated in %. Both are

stored their respective QVectors as well.

Remark: the code here has been slightly adjusted to keep the screenshot sufficiently legible.

Finally, the ‘SWP_run_sweep’ function returns true, indicating the sweep has been executed successfully and the data is
ready to use.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 24 of 26

3.5.2 Drawing a plot from the sweep data
After the sweep has been executed successfully, the data can be used to draw a plot and give the user a more easily
digestible overview than a bunch of text.

This is done in the ‘SWP_draw_plot’ function.

The SWP_draw_plot function uses the open source QCustomPlot library by Emanuel Eichhammer, available for download
here: https://www.qcustomplot.com/index.php/download

Documentation of the QCustomPlot is available here:

 https://www.qcustomplot.com/index.php/tutorials/settingup

 https://www.qcustomplot.com/documentation/index.html

First the contents of the sweep QVectors are checked. They mustn’t be empty.

Next the X-axis of the plot is configured to display the frequency data saved in the frequency QVector. Additionally,
the Y-axis, which will show S11 data, is configured for 2 decimals of precision.

Now it is time to deal with the S11 data.

Two variables of the type double are prepared, to store the smallest and largest values of the S11 data, to be used later
for setting the range of the Y-axis.

The ‘SWP_draw_plot’ function takes an ‘S11_notation’ argument. This argument can be either ‘logarithmic’ or ‘linear’, and
the plot is drawn differently depending on the choice.

If the notation is logarithmic, the plot uses data from the ‘SWP_s11_dbm_data’ QVector.

The smallest and largest values from the QVector are stored in ‘min_val’ and ‘max_val’, though they are ignored if
they exceed 0, as an S11 graph is expected to consist of only negative values.

The visible limits of the plot’s Y-axis are set to smallest and largest S11 values multiplied by a factor of 1.1 for improved
visibility.

http://www.qcustomplot.com/index.php/download
http://www.qcustomplot.com/index.php/download
http://www.qcustomplot.com/index.php/download
http://www.qcustomplot.com/index.php/tutorials/settingup
http://www.qcustomplot.com/index.php/tutorials/settingup
http://www.qcustomplot.com/documentation/index.html
http://www.qcustomplot.com/documentation/index.html

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 25 of 26

If the notation is linear, the plot instead uses data from the ‘SWP_s11_watt_data’ QVector.

The largest value from the QVector is stored in ‘max_val’, though it is capped to 100, as a reflection graph is expected to
at most have total reflection (100%). The visible limits of the plot’s Y-axis are set to 0 and ‘max_val’.

Finally the interaction permissions for the plot are configured and the plot drawn in the GUI.

3.5.3 Plot notation buttons
Lastly are the two buttons located right of the plotting area.

When either of these is pressed, they activate the ‘SWP_draw_plot’ function again, with either the linear or logarithmic
notation. SWP_draw_plot re-uses the last known measurements stored in the QVectors to re- draw the plot.

AN-50-008 Rev: OR DCO-000822 (03/07/22) File: AN-50-008.docx
This document and its contents are the property of Mini-Circuits. Page 26 of 26

3.6 About button
When pressed, the about button pops a message with legal information for the application.

The text of the message is retrieved from a file called ‘about.txt’, which is loaded into the project as a ‘resource’
and compiled into the executable.

	1. Introduction
	2.1 GUI Layout
	② Command buttons section
	③ Sweep section
	④ Communications log

	2.2 Using the GUI
	Manual
	Automatic

	3.1 Core Concepts
	3.1.1 Slots and signals
	3.1.2 MainWindow class
	3.1.3 QDebug
	3.2 Constructor
	3.2.1 Preparing the serial port
	3.2.1.1 Error handling
	3.2.1.2 Setting the port name
	3.2.2 Setting up port polling
	3.2.2.1 Updating the port list
	3.2.3 UI start-up state
	3.3 Button management – Serial Connections
	3.3.1 Ports comboBox
	3.3.2 Connect
	3.3.3 Disconnect
	3.3.4 Auto-Detect & Connect
	3.4 Button management – Command Buttons
	3.4.1 writeRead
	3.4.2 writeRead_OK
	3.4.3 Printing communications to the log
	3.5 Sweeping
	3.5.1 Executing a sweep and parsing the data
	3.5.2 Drawing a plot from the sweep data
	3.5.3 Plot notation buttons
	3.6 About button

