

# Wideband LNA

AVA-0233LN+

50Ω 2 to 30 GHz

#### THE BIG DEAL

- · Wide Bandwidth, 2 to 30 GHz
- Flat Gain Response, Typ. 16.3 dB ± 1 dB
- Noise Figure, Typ. 2.4 dB
- 5x5mm 32-Lead SMT Package
- Gain Control, Typ. 30 dB



Generic photo used for illustration purposes only

CASE STYLE: DG1677-4

### +RoHS Compliant The +Suffix identifies RoHS Compliance, our website for methodologies and qualifications

#### **APPLICATIONS**

- 5G MIMO and Back Haul Radio Systems
- Satellite Ka-Band Communications
- Test and Measurement Equipment
- · Radar, EW, and ECM Defense Systems

#### **PRODUCT OVERVIEW**

The AVA-0233LN+ is a GaAs pHEMT MMIC Distributed Amplifier that operates from 2 to 30 GHz. The amplifier provides solid performance of 16.3 dB gain, 2.4 dB noise figure, +13.6 dB P1dB, and +25.7 dBm OIP3 from a self-biased single +5V supply drawing only 65 mA. The control voltage bias input VC enables the gain to be varied by over 30 dB across the operating band. The AVA-0233LN+ MMIC amplifier is housed in an industry standard 5x5mm QFN-style package, with RF ports internally matched to  $50\Omega$ , facilitating easy integration into microwave system PC boards.

#### **KEY FEATURES**

| Features                                                                                    | Advantages                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Wideband response with adjustable Gain:<br>2-30 GHz, Typ. Gain 16.3 dB, 30 dB dynamic range | General purpose wideband amplifier with adjustable gain vs. control voltage is suitable for wide variety of applications.                      |  |
| Noise Figure:<br>2 dB Typ. 6-20 GHz<br>4 dB Typ. 2-30 GHz                                   | Usable as first or second stage amplifier.                                                                                                     |  |
| OIP3:<br>+26 dBm Typ. 2-20 GHz<br>+23 dBm Typ. 20-30 GHz                                    |                                                                                                                                                |  |
| Return Loss<br>15 dB Typ. 2-20 GHz<br>10 dB Typ. 20-30 GHz                                  | - Easy to integrate into signal chain.                                                                                                         |  |
| 5 x 5mm 32-Lead QFN-style package                                                           | Small footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB. |  |

## Wideband LNA

AVA-0233LN+

 $50\Omega$  2 to 30 GHz

#### ELECTRICAL SPECIFICATIONS¹ AT 25°C, Zo=50Ω, VDD=+5V, VC = OPEN, UNLESS NOTED OTHERWISE.

| Parameter                                                              | Condition (GHz) | Min.  | Тур.   | Max.  | Units |  |
|------------------------------------------------------------------------|-----------------|-------|--------|-------|-------|--|
| Frequency Range                                                        |                 | 2     |        | 30    | GHz   |  |
|                                                                        | 2               | 16.9  | 17.2   | 17.8  |       |  |
|                                                                        | 10              | 15.8  | 16.7   | 17.4  |       |  |
| Gain                                                                   | 20              | 15.2  | 16.3   | 17.3  | dB    |  |
|                                                                        | 28              | 12.9  | 14.7   | 16.5  |       |  |
|                                                                        | 30              | 12.7  | 15.5   | 17.5  |       |  |
|                                                                        | 2               |       | 20.0   |       |       |  |
|                                                                        | 10              |       | 14.8   |       |       |  |
| Input Return Loss                                                      | 20              |       | 12.5   |       | dB    |  |
|                                                                        | 28              |       | 8.9    |       |       |  |
|                                                                        | 30              |       | 17.2   |       |       |  |
|                                                                        | 2               |       | 11.5   |       |       |  |
|                                                                        | 10              |       | 19.3   |       |       |  |
| Output Return Loss                                                     | 20              |       | 13.1   |       | dB    |  |
| ·                                                                      | 28              |       | 6.5    |       |       |  |
|                                                                        | 30              |       | 11.4   |       |       |  |
| Reverse Isolation                                                      | 2-30            |       | 37.0   |       | dB    |  |
|                                                                        | 2               |       | +16.4  |       |       |  |
|                                                                        | 10              |       | +15.1  |       |       |  |
| Output Power @ 1 dB Compression                                        | 20              |       | +13.6  |       | dBm   |  |
|                                                                        | 28              |       | +11.5  |       |       |  |
|                                                                        | 30              |       | +11.5  |       |       |  |
|                                                                        | 2               |       | +28.4  |       |       |  |
|                                                                        | 10              |       | +27.0  |       |       |  |
| Output Third-Order Intercept                                           | 20              |       | +25.7  |       | dBm   |  |
| Pout = 0 dBm/Tone                                                      | 28              |       | +22.5  |       |       |  |
|                                                                        | 30              |       | +20.6  |       |       |  |
|                                                                        | 2               |       | 4.2    |       |       |  |
|                                                                        | 10              |       | 1.5    |       |       |  |
| Noise Figure                                                           | 20              |       | 2.4    |       | dB    |  |
| 3                                                                      | 28              |       | 4.5    |       |       |  |
|                                                                        | 30              |       | 4.8    |       |       |  |
| Device Operating Voltage (VDD)                                         |                 | +4.75 | +5     | +5.25 | V     |  |
| Device Operating Current (IDD)                                         |                 | -     | 65     | 92    | mA    |  |
| Device Control Voltage (VC)                                            |                 | -1.2  | Open   | +2.4  | V     |  |
| Gain Variation over Control Voltage (VC) <sup>4</sup> over -1.2V to 0V | 2-30            |       | 30     |       | dB    |  |
| Gain Variation over Control Voltage (VC) <sup>4</sup> over 0V to +2.4V | 2-30            |       | 1      |       | dB    |  |
| Device Current (IDD) Variation vs. Temperature <sup>2</sup>            |                 |       | -10    |       | μΑ/°C |  |
| Device Current (IDD) Variation vs. Voltage <sup>3</sup>                |                 |       | 0.0128 |       | mA/mV |  |
| Thermal Resistance, Junction-to-Ground-Lead (⊖JC)                      |                 |       | 14.7   |       | °C/W  |  |

<sup>1.</sup> Measured on Mini-Circuits Characterization Test Board TB-AVA-0233LNC+. See Characterization and Application Circuit (Fig.1).

#### MAXIMUM RATINGS<sup>5</sup>

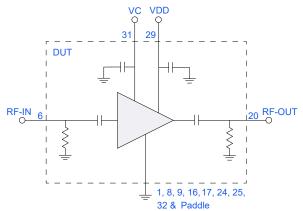
| Parameter                      | Ratings         |  |  |
|--------------------------------|-----------------|--|--|
| Operating Case Temperature     | -45°C to +85°C  |  |  |
| Storage Temperature            | -65°C to +150°C |  |  |
| Total Power Dissipation        | 1.55W           |  |  |
| Junction Temperature           | +150°C          |  |  |
| RF Input Power (CW)            | +20 dBm         |  |  |
| DC Voltage at VDD              | +8V             |  |  |
| DC Voltage at VC               | -2.5V to +3V    |  |  |
| Current IDD                    | 140mA           |  |  |
| Current IC                     | 5mA             |  |  |
| DC Voltage on RF-IN and RF-OUT | +18V            |  |  |

<sup>5.</sup> Permanent damage may occur if any of those limits are exceeded. Electrical maximum



<sup>2.</sup> Device Current Variation vs. Temperature = (Current in mA at +85°C – Current in mA at -45°C)/+130°C
3. Device Current Variation vs. Voltage = (Current in mA at +5.25V – Current in mA at +4.75V) / (+5.25V-+4.75V)\*1000mA/mV)

<sup>4.</sup> Gain is nominal when VC = Open. When VC is left floating, there is a measured voltage of +2V on the pin. To reduce gain, add a negative bias.


ratings are not intended for continuous normal operation.

### Wideband LNA

AVA-0233LN+

50Ω 2 to 30 GHz

#### SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION



#### **TOP VIEW** NC VDD NC NC NC GND GND 24 1 NC 23 NC 22 NC NC 4 21 NC **RF-OUT** [ 19 ] RF-IN NC NC [18] GND [17] GND GND NC NC NC NC NC GND

| Function         | Pad Number                                         | Description (Refer to Figure 1)                                                                                                 |
|------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| RF-IN            | 6                                                  | RF-Input Pad connects to RF-Input through an integrated shunt resistor for ESD protection and DC blocking capacitor.            |
| RF-OUT           | 20                                                 | RF-Output Pad connects to RF-Output through an integrated shunt resistor for ESD protection and DC blocking capacitor.          |
| VDD              | 29                                                 | DC Input Pad connects to the voltage input of the device and passes through C2 and an integrated capacitor.                     |
| VC               | 31                                                 | Control Voltage Bias Pad connects to the control voltage input of the device and passes through C1 and an integrated capacitor. |
| Ground           | 1, 8, 9, 16, 17, 24,<br>25, 32                     | Connects to ground.                                                                                                             |
| No<br>Connection | 2 - 5, 7, 10 - 15, 18, 19,<br>21 - 23, 26 - 28, 30 | Not used internally. Connected to ground on test board.                                                                         |

#### **CHARACTERIZATION TEST & APPLICATION CIRCUIT**

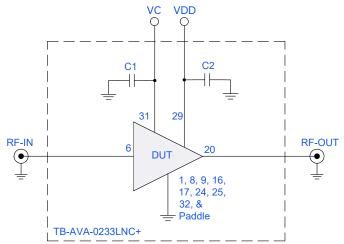



Fig 1. Characterization and Application Circuit Note: This block diagram is used for characterization (DUT is soldered on Mini-Circuits Test Board TB-AVA-0233LNC+). Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using Keysight PNA-X N5247B Microwave Network Analyzer.

#### Conditions:

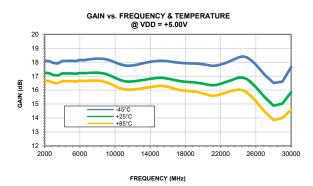
- 1. VDD = +5V, VC = Open
- 2. Gain and Return Loss  $P_{IN}$  = -25 dBm 3. Output IP3 (OIP3): Two Tones, spaced 1 MHz apart, 0 dBm/Tone at output.

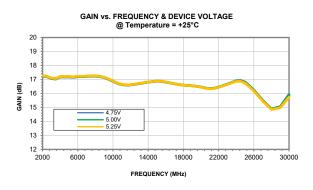
| Component | Size | Value | Manufacturer | P/N                |
|-----------|------|-------|--------------|--------------------|
| C1, C2    | 0402 | 0.1uF | Murata       | GRM155R71C104KA88D |

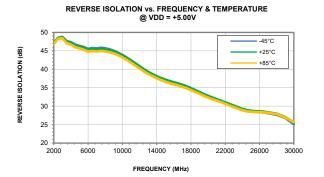
#### **PRODUCT MARKING**

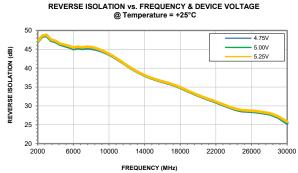


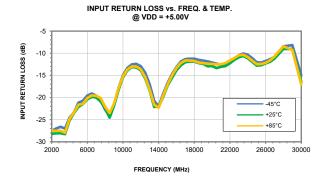
Marking may contain other features or characters for internal lot control

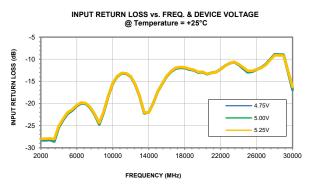


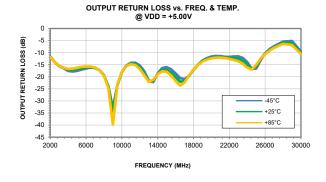


## Wideband LNA

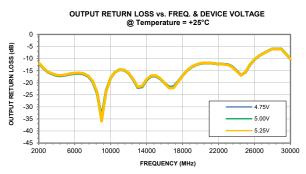

AVA-0233LN+


50Ω 2 to 30 GHz


#### **TYPICAL PERFORMANCE CURVES**



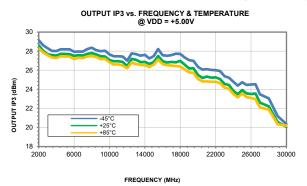



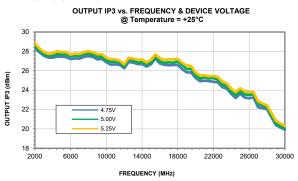


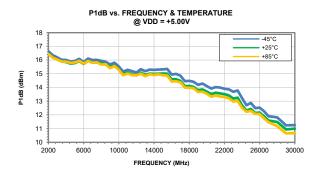


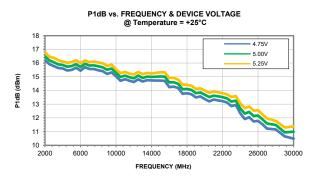


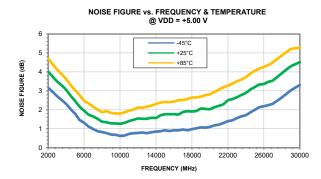


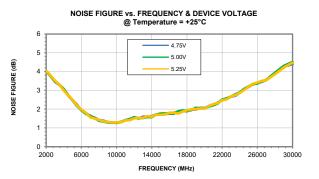





## Wideband LNA


**AVA-0233LN+** 


50Ω 2 to 30 GHz


#### **TYPICAL PERFORMANCE CURVES**

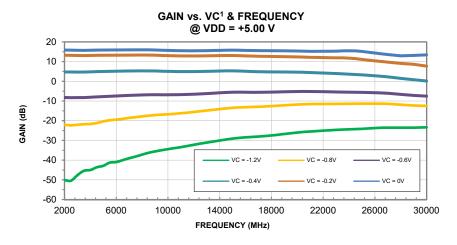


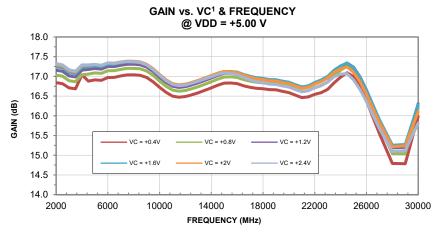




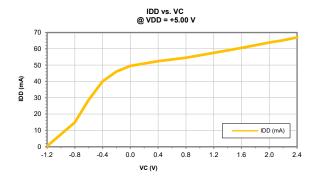






### Wideband LNA

**AVA-0233LN+** 


50Ω 2 to 30 GHz

#### **VC CONTROL VS. GAIN, FREQUENCY, & CONTROL CURRENT**





1. Gain is nominal when VC = Open. When VC is left floating, there is a measured voltage of +2V on the pin.



**AVA-0233LN+** 

50Ω 2 to 30 GHz

#### ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. TO ACCESS

**CLICK HERE** 

|                                                                         | Data Table                                                                                   |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Performance Data                                                        | Swept Graphs                                                                                 |  |
|                                                                         | S-Parameter (S2P Files) Data Set (.zip file)                                                 |  |
| Case Style DG1677-4 QFN-style package, exposed paddle, lead finish: PPF |                                                                                              |  |
| Tape & Reel<br>Standard quantities available on reel                    | F66<br>7" reels with 20, 50, 100, 200, 500 or 1000 devices                                   |  |
| Suggested Layout for PCB Design                                         | PL-741                                                                                       |  |
| Evaluation Board                                                        | TB-AVA-0233LNC+                                                                              |  |
| Environmental Ratings                                                   | ENV08T10                                                                                     |  |
| Product Handling                                                        | The use of no-clean solder is recommended. This package cannot be subjected to aqueous wash. |  |

#### **ESD RATING**

Human Body Model (HBM): Class 1A (250V) in accordance with ANSI/ESDA/JEDEC JS-001-2017 Charged Device Model (CDM): Class C3 (1000V) in accordance with JESD22-C101F

#### **MSL RATING**

Moisture Sensitivity: MSL3 in accordance with IPC/JEDEC J-STD-020E and IPC/JEDEC J-STD-033C.

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini Circuits' website at www.minicircuits.com/terms/viewterm.html

