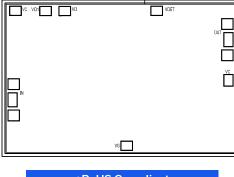


Wideband Amplifier

AVA-054-D+


50Ω DC to 50 GHz

THE BIG DEAL

- Wideband, DC to 50 GHz
- Gain Flatness, ±2.2 dB
- Typical P1dB, +19 dBm

APPLICATIONS

- 5G MIMO and Back Haul Radio Systems
- Satellite Ka-band Communications
- Test and Measurement Equipment
- Radar, EW, and ECM Defense Systems

+RoHS Compliant
The +Suffix identifies RoHS Compliance.
See our website for methodologies and qualifications

SEE ORDERING INFORMATION ON THE LAST PAGE

PRODUCT OVERVIEW

AVA-054-D+ is a GaAs PHEMT MMIC Distributed Amplifier designed for use in microwave and millimeter wave transceiver systems and signal sources operating from 0.05 to 50 GHz. The amplifier provides 16 dB of Gain, +19 dBm P1dB and +26 dBm OIP3 while operating from a +5V supply with 160 mA current consumption. The MMIC Amplifier includes an on chip power detector for power monitoring and the Gain can be varied over a 20 dB range with a control voltage. The AVA-054-D+ performance characteristics and features makes the device useful for a wide range of Test and Measurement Equipment and Defense Systems operating in frequency ranges from 0.05-50 GHz.

KEY FEATURES

Features	Advantages
Wideband: DC to 50 GHz	General purpose wideband amplifier is suitable for various applications.
Gain: 16.5 dB ± 1.5 dB from 0.1 to 45 GHz.	Minimizes the number of gain stages required to achieve published Gain, reducing component count, cost and complexity.
P1dB: +19.5 dBm ± 1.6 dB	Useful as a driver amplifier. Can be used as a final amplifier in local oscillator chains to drive +17 dBm mixers.
On Chip Power Detector	Enables power monitoring and AGC loops.
Adjustable Gain with control voltage	Useful temperature compensation and AGC of wide bandwidth signal chains.
Unpackaged die	Enables user to integrate it directly into hybrids.

MMIC DIE Wideband Amplifier AVA-054-D+

50Ω DC to 50 GHz

ELECTRICAL SPECIFICATIONS¹ AT 25°C, V_C = OPEN, V_{DD} = +5V, Z_O = 50 Ω , UNLESS NOTED OTHERWISE

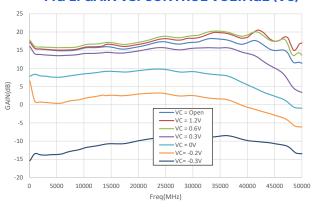
Parameter	Condition (GHz)	V	Units		
i didilictei	Condition (di 12)	Min.	Тур.	Max.	Jillis
Frequency Range		DC		50	GHz
	0.1		17.3		
	10		15.6		
2 . 2	20		16.1		
Gain ²	30		17.4		dB
	40		17.4		
	50		13		
	0.1		12		
	10		15		
. D	20		17		
nput Return Loss	30		22		dB
	40		12		
	50		25		
	0.1		27		
	10		21		
	20		16		
Output Return Loss	30		16		dB
	40		14		
	50		12		
Reverse Isolation	0.1-50		36		dB
	0.1		+20.7		
	10		+20.0		
	20		+19.3		
Output Power at 1 dB Compression	30		+17.9		dBm
	40		+17.0		
	50				
	0.1		+32		
	10		+27.3		
Output Third-Order Intercept	20		+26.9		
$P_{OUT} = +5 \text{ dBm/Tone}$	30		+22.5		dBm
	40		+20.8		
	50				
	0.1		5.5		
	10		3.1		
	20		4.0		
Noise Figure	30		5.5		dB
	40		7.8		
	50		11.8		
Device Operating Voltage (V _{DD})			+5.0		V
Device Operating Current (I _{DD})			160.0		mA
Device Gate Voltage (V _{GG})			-0.76		V
Device Gate Current (I _{GG})			-0.24		μA
Thermal Resistance, Junction-to-Ground Lead (ΘJC)			17.8		°C/W

^{1.} Die is soldered and measured on Mini-Circuits die characterization board. See Characterization & Application Circuit (Fig. 2).

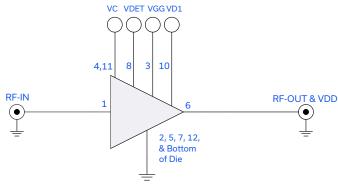
2. If $\ensuremath{V_{\text{C}}}$ is open, the measured voltage is +1.33V.

MMIC DIE Wideband Amplifier

AVA-054-D+

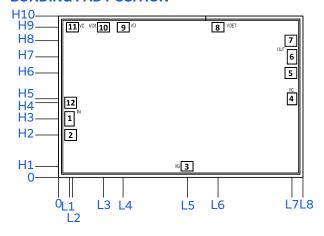

DC to 50 GHz 50Ω

MAXIMUM RATINGS³


Parameter	Ratings		
Operating Temperature	-40°C to +85°C		
Junction Temperature	+150°C ⁴		
Total Power Dissipation	1.8 W		
Input Power (CW)	+17dBm		
Drain Voltage (V _{DD})	+7.5 V		
Gate Voltage (V _{GG})	-1.6 V to -0.5 V		
Drain Current (I _{DD})	240 mA		
Gate Current (I _{GG})	-5 mA to 0 mA		
Control Voltage (V _C)	-1 V to 1.2 V		

- 3. Permanent damage may occur if these limits are exceeded. 4. Tj = +85°C + (VDD)*(IDD)*(Θ JC) = +99°C. Keeping Tj below +99°C will ensure MTTF > 100 Years.

FIG 1. GAIN VS. CONTROL VOLTAGE (VC)



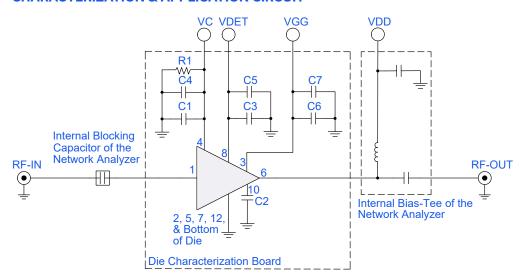
SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description
RF-IN	1	RF Input Pad
VGG	3	Gate Bias Pad
VC	4, 11	Gain Control Pads
RF-OUT & VDD	6	RF Output and Drain Pad
VDET	8	Voltage Detector Pad
VD	9	Alternative Drain Bias Pad, connects to Pad #6 internally.
VD1	10	Alternative Drain Bias Pad. It is terminated by C2
GROUND	2, 5, 7, 12, & Bottom of die	The bond pads are connected to backside through vias and do no require wire-bond connections to ground.

BONDING PAD POSITION

DIMENSIONS IN µm, TYP.

L1		L2	L3	1	L4	L5		L6		L7		L8
88		112	36	3	520	1040		1285	1	882		1970
H1	H2	! Н	13	H4	H5	H6	HZ	7	H8	Н	9	H10
89	34:	1 4	71	601	633	841	97	1 1	101	12	11	1300
Thickr	iess	Die	size	F	Pad size 1,6	Pad s 2, 5, 7		Pad size 3, 8, 9, 10, & 11		d size 4		
100)	1970	x 1300	7	73 x 113	91 x	86	93	x 73	x 73 73 x		3 x 93



Wideband Amplifier

AVA-054-D+

50Ω DC to 50 GHz

CHARACTERIZATION & APPLICATION CIRCUIT

Component	Size	Value	Part Number	Manufacturer
C1, C3, & C6	100pF	22x22mil	MA4M3100	MACOM Inc.
C2	820pF	20x20mil	SKT02C821M11A6	TECDIA Inc.
C4, C5, & C7	0.1µF	0402	GRM155R71C104KA88D	Murata
R1	200Ω	0603	RK73H1JTTD2001F	КОА

Fig 2. Characterization & Application Circuit

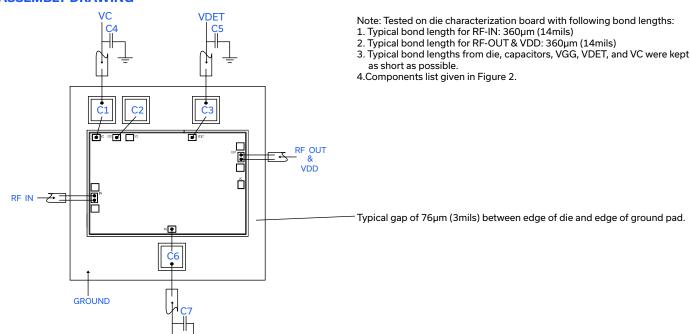
Note: This block diagram is used for characterization (Die is attached and wire-bonded on die characterization test board). Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5245B Microwave Network Analyzer.

Conditions:

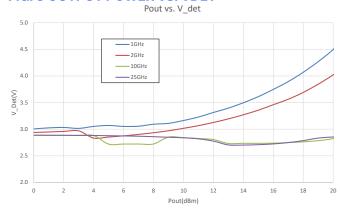
- 1. VDD = +5V,
- 2. VGG is set to obtain desired IDD as shown in specification table.
- 3. Gain and Return Loss: Pin= -25 dBm
- 4. Output IP3 (OIP3): Two Tones, spaced 1 MHz apart, +5 dBm/Tone at output.

Switch ON/OFF sequence:

- 1. To switch the amplifier ON:
- a. Set VGG = -1.2V. Apply VGG.
- b. Set VDD = +5V. Apply VDD
- c. Adjust VGG to get IDD = 160mA (Typically, VGG = -0.76V)
- d. Apply RF Signal.
- 2. To switch the amplifier OFF:
- a. Turn off RF Signal
- b. Adjust VGG down to -1.2V.
- c. Turn off VDD.
- d. Turn off VGG


MMIC DIE

Wideband Amplifier


AVA-054-D+

50Ω DC to 50 GHz

ASSEMBLY DRAWING

FIG. 3 OUTPUT POWER VS. VDET

ASSEMBLY PROCEDURE

1. Storage

Die should be stored in a dry nitrogen purged desiccators or equivalent.

2.

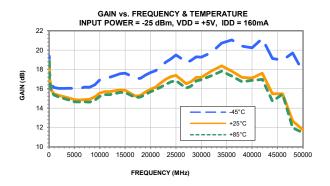
ESD

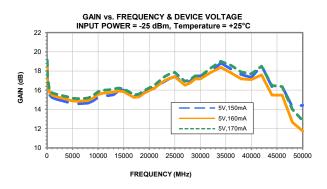
MMIC PHEMT amplifier die are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be open in clean room conditions at an appropriately grounded anti-static workstation.

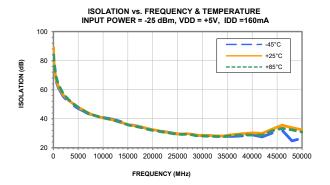
3. Die Handling and Attachment

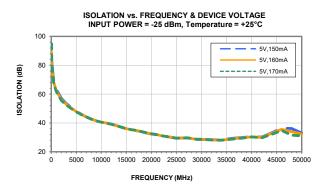
Devices need careful handling using correctly designed collets, it is recommended to handle the chip along the edges with a custom design collet. The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are Ablestik 84-1 LMISR4 or equivalents. Apply sufficient epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. The surface of the chip has exposed air bridges and should not be touched with vacuum collet, tweezers or fingers.

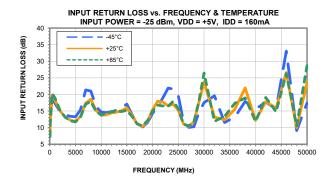
4. Wire Bonding

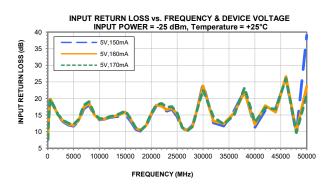

Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the die gold bond pads. Thermo-sonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1mil diameter. Bonds must be made from the bond pads on the die to the packaged or substrate. All bond wire length and bond wire height should be kept as short as possible unless specified by the Assembly Drawing to minimize performance degradation due to undesirable series inductance.

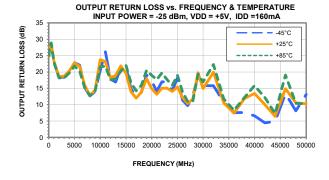


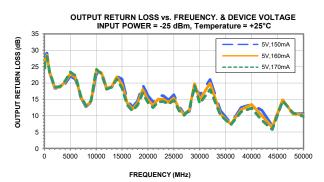


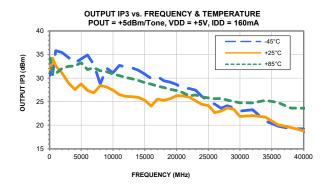

MMIC DIE Wideband Amplifier AVA-054-D+

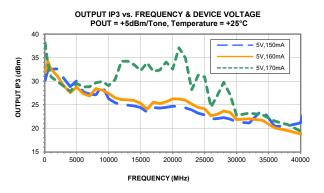

50Ω DC to 50 GHz

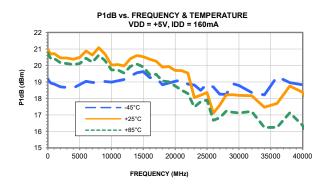


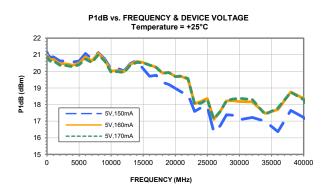


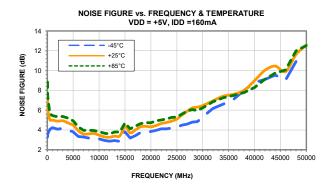


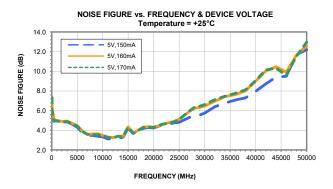


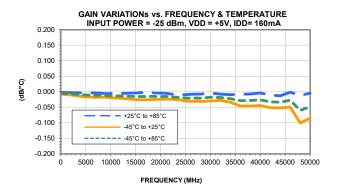





MMIC DIE Wideband Amplifier AVA-054-D+


50Ω DC to 50 GHz





Wideband Amplifier

AVA-054-D+

50Ω DC to 50 GHz

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD.

	Data Table			
Performance Data				
	S-Parameter (S2P Files) Data Set with and without port extension(.zip file)			
Case Style	Die			
	Quantity, Package	Model No.		
Die Ordering and packaging information	Gel – Pak: 5, 10, 50, 100, KGD* Medium [†] , Partial wafer: KGD*<768 Full Wafer	AVA-054-DG+ AVA-054-DP+ AVA-054-DF+		
	[†] Available upon request contact sales representative Refer to AN-60-067			
Die Marking	EL-AMP-13			
Environmental Ratings	ENV80			

^{*}Known Good Die ('KGD') means that the die in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such die fall within predefined range. While DC testing is not definitive, it does provide a higher degree of confidence that die are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained there in. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an As is basis, with all faults.
- E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Die (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Die.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

