


17 to 31.5 GHz High Linearity Driver Mini-Circuits 50Ω

### **THE BIG DEAL**

- High P1dB, Typ. +23.8 dBm
- High OIP3, Typ. +36 dBm
- Supply Voltage, +6 V at 160 mA

### **FUNCTIONAL DIAGRAM**



SEE ORDERING INFORMATION ON THE LAST PAGE

### **APPLICATIONS**

- Test and Measurement Equipment
- Satellite Communications
- Radar, EW, and ECM Defense Systems
- 5G mmWave, MIMO Wireless Infrastructure Systems
- Microwave Radio & VSAT

### **PRODUCT OVERVIEW**

The AVA-17303-D+ is a GaAs MMIC Medium Power Amplifier operating from 17 to 31.5 GHz. This amplifier provides typical 19.2 dB of gain, +23.8 dBm P1dB, and +36 dBm OIP3 while operating from a +6 V power supply at 160 mA. The device is matched to  $50\Omega$  and comes as a die suitable for chip and wire assemblies. These characteristics make it ideally suited as a driver amplifier in point-to-point radios and communications systems requiring high output power while maintaining low distortion characteristics.

#### **KEY FEATURES**

| Features                                             | Advantages                                                                                                                                                                            |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| High Gain, Typ. 19.2 dB<br>High P1dB, Typ. +23.8 dBm | High gain and output power make this device excellent for wideband systems from 17 to 31.5 GHz that require at<br>least 0.2 W of operating output power over the full band.           |  |
| High OIP3, Typ. +36 dBm                              | High operating OIP3 provides very low in-band distortion products, enabling minimal signal degradation in high fidel-<br>ity measurement systems and demanding communication systems. |  |
| Unpackaged Die                                       | Enables integration into hybrid chip and wire assemblies.                                                                                                                             |  |

REV. OR ECO-025192 AVA-17303-D+ MCL NY 250410

**Mini-Circuits** 



#### Mini-Circuits 50Ω

17 to 31.5 GHz High Linearity Driver

#### ELECTRICAL SPECIFICATIONS<sup>1</sup> AT +25°C, V<sub>DD</sub> = +6 V, AND Zo = 50Ω, UNLESS NOTED OTHERWISE

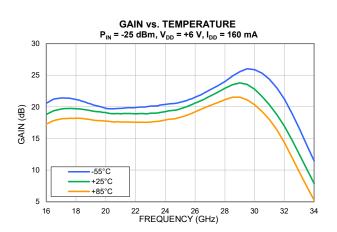
| Parameter                                                | Condition (GHz) | Min. | Тур.  | Max. | Units |
|----------------------------------------------------------|-----------------|------|-------|------|-------|
| Frequency Range                                          |                 | 17   |       | 31.5 | GHz   |
|                                                          | 17              |      | 19.7  |      |       |
|                                                          | 20              |      | 19.1  |      |       |
| Cala                                                     | 24              |      | 19.2  |      | dD    |
| Gain                                                     | 27              |      | 21.7  |      | dB    |
|                                                          | 30              |      | 22.8  |      |       |
|                                                          | 31.5            |      | 18.7  |      |       |
|                                                          | 17              |      | 8     |      | -     |
|                                                          | 20              |      | 12    |      |       |
| In much Determined a sec                                 | 24              |      | 9     |      |       |
| Input Return Loss                                        | 27              |      | 10    |      | dB    |
|                                                          | 30              |      | 13    |      |       |
|                                                          | 31.5            |      | 12    |      |       |
|                                                          | 17              |      | 14    |      |       |
|                                                          | 20              |      | 11    |      |       |
| Output Dature Lana                                       | 24              |      | 13    |      |       |
| Output Return Loss                                       | 27              |      | 11    |      | dB    |
|                                                          | 30              |      | 22    |      |       |
|                                                          | 31.5            |      | 24    |      |       |
| Isolation                                                | 17 - 31.5       |      | 54    |      | dB    |
|                                                          | 17              |      | +23.6 |      |       |
|                                                          | 20              |      | +23.2 |      |       |
|                                                          | 24              |      | +23.8 |      |       |
| Output Power at 1 dB Compression (P1dB)                  | 27              |      | +25.0 |      | dBm   |
|                                                          | 30              |      | +23.3 |      |       |
|                                                          | 31.5            |      | +21.2 |      |       |
|                                                          | 17              |      | +25.3 |      |       |
|                                                          | 20              |      | +24.5 |      |       |
|                                                          | 24              |      | +24.5 |      |       |
| Output Power at Saturation $(P_{SAT})^2$                 | 27              |      | +25.2 |      | dBm   |
|                                                          | 30              |      | +23.6 |      |       |
|                                                          | 31.5            |      | +21.4 |      |       |
|                                                          | 17              |      | +32   |      |       |
|                                                          | 20              |      | +33   |      |       |
| Output Third-Order Intercept (OIP3)                      | 24              |      | +36   |      |       |
| (P <sub>out</sub> = +6 dBm/Tone)                         | 27              |      | +38   |      | dBm   |
|                                                          | 30              |      | +39   |      |       |
|                                                          | 31.5            |      | +34   |      |       |
|                                                          | 17              |      | 6.5   |      |       |
|                                                          | 20              |      | 4.8   |      |       |
| Naira Firma                                              | 24              |      | 3.6   |      | dB    |
| Noise Figure                                             | 27              |      | 3.0   |      |       |
|                                                          | 30              |      | 3.5   |      |       |
|                                                          | 31.5            |      | 3.8   |      |       |
| Device Operating Voltage (V <sub>DD</sub> ) <sup>3</sup> |                 | +5   | +6    | +7   | V     |
| Device Operating Current (I <sub>DD</sub> ) <sup>4</sup> |                 |      | 160   |      | mA    |
| Gate Voltage (V <sub>G</sub> )                           |                 |      | -0.59 |      | V     |
| Gate Current (I <sub>G</sub> ) <sup>5</sup>              |                 |      | 57    |      | μA    |
| Device Current Variation vs. Temperature <sup>6</sup>    |                 |      | -3.6  |      | μΑ/°C |

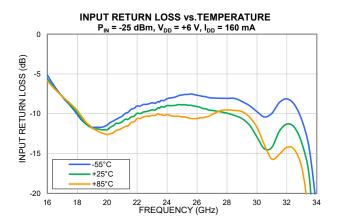
1. Tested in Mini-Circuits Die Characterization Test Board. See Figure 2. Trace and connector losses are de-embedded. Specifications Include the effect of bond wires.

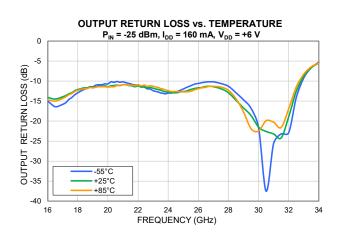
2. Defined as output power at which change is 0.1 per 1 dB change in input power.

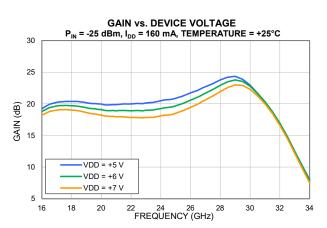
 $\begin{aligned} &3. V_{DD} = V_{d1} = V_{d2} = V_{d3} \\ &4. \text{ Current at } P_{IN} = -25 \text{ dBm. Increases to 250 mA at P1dB. } I_{DD} = I_{d1} + I_{d2} + I_{d3}. \\ &5. \text{ Current at } P_{IN} = -25 \text{ dBm. Increases to 300 } \mu\text{A at P1dB.} \end{aligned}$ 

6. (Current at +85°C - Current at -55°C)/(140°C). V<sub>G</sub> held constant over temperature.

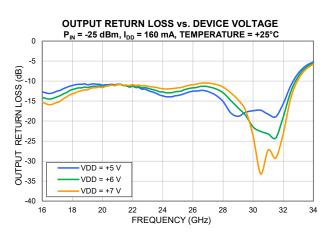

## Mini-Circuits





Mini-Circuits


17 to 31.5 GHz High Linearity Driver 50Ω

## **TYPICAL PERFORMANCE GRAPHS**

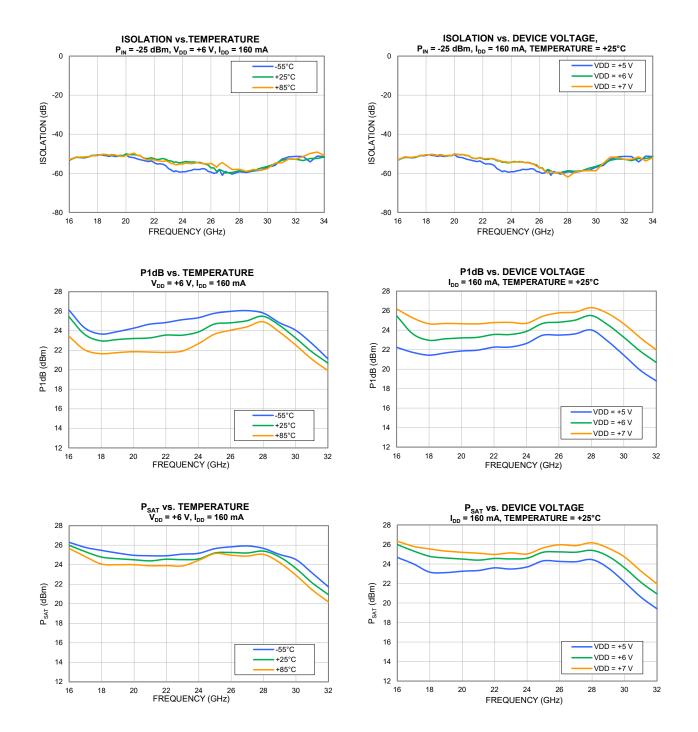









INPUT RETURN LOSS vs. DEVICE VOLTAGE  $P_{IN}$  = -25 dBm,  $I_{DD}$  = 160 mA, TEMPERATURE = +25°C 0 VDD = +5 V VDD = +6 V VDD = +7 V -20 18 20 32 34 16 30 <sup>22</sup> FREQUENCY (GHz)<sup>28</sup>

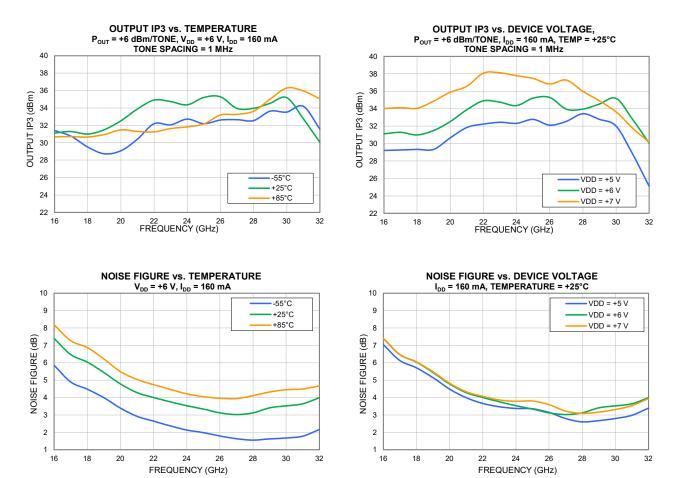





Mini-Circuits

17 to 31.5 GHz High Linearity Driver 50Ω

## **TYPICAL PERFORMANCE GRAPHS**






Mini-Circuits

17 to 31.5 GHz High Linearity Driver 50Ω

## **TYPICAL PERFORMANCE GRAPHS**





160 mA

200 mA

250 mA

30

32

32

P1dB vs. CURRENT V<sub>DD</sub> = +6 V, TEMPERATURE = +25°C

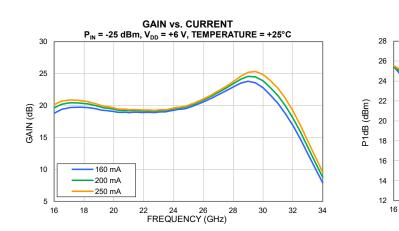
Mini-Circuits

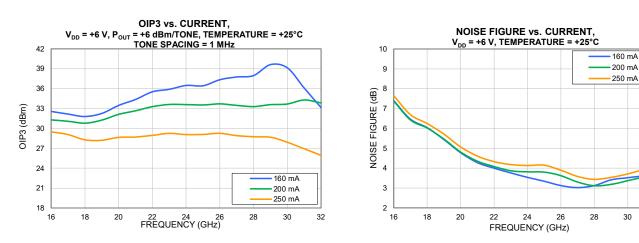
17 to 31.5 GHz High Linearity Driver 50Ω

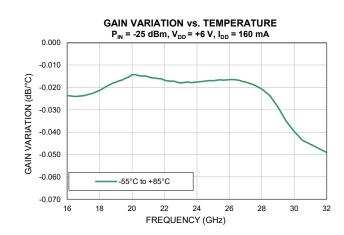
## **TYPICAL PERFORMANCE GRAPHS**

18

20


22


24


FREQUENCY (GHz)

26

28









17 to 31.5 GHz High Linearity Driver Mini-Circuits 50Ω

| ABSOLUTE MAXIMUM RATINGS <sup>7</sup>                |                 |  |  |
|------------------------------------------------------|-----------------|--|--|
| Parameter                                            | Ratings         |  |  |
| Operating Temperature <sup>8</sup>                   | -55°C to +85°C  |  |  |
| Storage Temperature <sup>9</sup>                     | -65°C to +150°C |  |  |
| Junction Temperature <sup>10</sup>                   | +175°C          |  |  |
| Total Power Dissipation                              | 1.8 W           |  |  |
| Input Power (CW), V <sub>DD</sub> = +6 V             | +25 dBm         |  |  |
| DC Voltage on RF-OUT & V <sub>DD</sub> <sup>11</sup> | +9 V            |  |  |
| DC Drain Current I <sub>DD</sub> <sup>12</sup>       | 500 mA          |  |  |
| DC Voltage at RF-IN                                  | +9 V            |  |  |
| DC Voltage at RF-OUT                                 | +9 V            |  |  |
| DC Gate Voltage V <sub>g</sub>                       | -6 V to +1 V    |  |  |
| DC Gate Current Ig                                   | 8 mA            |  |  |

7. Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.

8. Bottom of Die.

9. For die shipped in Gel-Pak see ENV80 (limited by packaging).

10. Peak temperature on Top of Die.

11.  $V_{DD} = V_{d1} = V_{d2} = V_{d3}$ . 12.  $I_{DD} = I_{d1} + I_{d2} + I_{d3}$ .

#### THERMAL RESISTANCE

| Parameter                               | Ratings  |
|-----------------------------------------|----------|
| Thermal Resistance $(\Theta_{JC})^{13}$ | 46.9°C/W |

13. O<sub>IC</sub>= (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

#### ESD RATING<sup>14</sup>

|                                                                                | Class | Voltage Range    | Reference Standard          |
|--------------------------------------------------------------------------------|-------|------------------|-----------------------------|
| HBM                                                                            | 1A    | 250 V to < 500 V | ANSI/ESDA/JEDEC JS-001-2023 |
| CDM                                                                            | C2A   | 500 V to < 750 V | ANSI/ESDA/JEDEC JS-002-2022 |
| ED LIANDUNC DECAUTION. This device is designed to be Close 1A for LIDM. Statis |       |                  |                             |

SD HANDLING PRECAUTION: This device is designed to be Class 1A for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

14. Tested in 4x4mm 20-lead QFN-Style Package



Mini-Circuits

17 to 31.5 GHz High Linearity Driver 50Ω

### **FUNCTIONAL DIAGRAM**

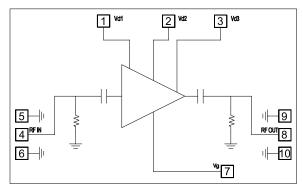
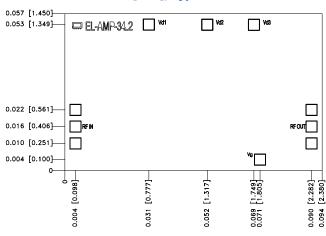




Figure 1. AVA-17303-D+ Functional Diagram

### **PAD DESCRIPTION**

| Function        | Pad<br>Number                    | Description (Refer to Fig 1)                                               |
|-----------------|----------------------------------|----------------------------------------------------------------------------|
| RF IN           | 4                                | RF Input Port                                                              |
| RF OUT          | 8                                | RF Output Port                                                             |
| V <sub>d1</sub> | 1                                | Drain Voltage Input Port 1                                                 |
| V <sub>d2</sub> | 2                                | Drain Voltage Input Port 2                                                 |
| V <sub>d3</sub> | 3                                | Drain Voltage Input Port 3                                                 |
| V <sub>g</sub>  | 7                                | Gate Voltage Input                                                         |
| GND             | 5, 6, 9, 10,<br>Bottom of<br>Die | Connected to die backside through vias. Bond wires to ground are optional. |

### **DIE OUTLINE: inches [mm], Typical**



### **DIMENSIONS:** inches [mm], Typical

| Die Size                       | 0.094 x 0.057 [2.38 x 1.45]   |  |
|--------------------------------|-------------------------------|--|
| Die Thickness                  | 0.0040 [0.100]                |  |
| Bond Pad Sizes:                | 0.004 x 0.004 [0.100 x 0.100] |  |
| Plating (Pads & Bottom of Die) | Gold                          |  |

Figure 2. AVA-17303-D+ Die Outline

# Medium Power Amplifier AVA-17303-D+

#### 17 to 31.5 GHz High Linearity Driver Mini-Circuits 50Ω

#### **CHARACTERIZATION AND APPLICATION CIRCUIT**

**MMIC DIE** 

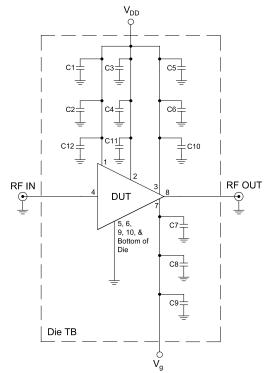



Figure 3. AVA-17303-D+ Evaluation and Application Circuit

#### **Electrical Parameters and Conditions**

Gain, Return Loss, Output Power at 1 dB Compression (P1dB), Output IP3 (OIP3), and Noise Figure measured using N5245B PNA-X Microwave Network Analyzer.

#### Conditions:

1. Gain and Return Loss: P<sub>IN</sub> = -25 dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, +6 dBm/Tone at output.

#### Power ON/Power OFF Sequence

Caution: Permanent damage to the device will occur if the Power ON and Power OFF sequences are not followed.

#### POWER ON:

1. Set  $V_g$  = -1.2 V and Turn ON. 2. Set  $V_{DD}^{"}$  = +6 V and Turn ON. 3. Increase  $V_g$  to desired nominal  $I_{DD}$  = 160 mA. 4. Turn ON RF signal.

#### POWER OFF:

1. Turn OFF RF signal. 2. Decrease V<sub>g</sub> to -1.2 V 3. Turn OFF  $V_{DD}$ 4. Turn OFF Va

| Component      | Value  | Size          | Part Number        | Manufacturer    |
|----------------|--------|---------------|--------------------|-----------------|
| C1, C3, C5, C9 | 10 µF  | 1206          | CL31B106KBHNNNE    | SAMSUNG         |
| C2, C4, C6, C8 | 0.1 µF | 0603          | 06035C104KAT2A     | AVX CORPORATION |
| C7             | 100 pF | 0603          | GRM1885C1H101GA01D | MURATA          |
| C10, C11, C12  | 100 pF | 0.22" x 0.22" | MA4M3100           | MACOM           |



Mini-Circuits 500 17 to 31.5 GHz High Linearity Driver

### ASSEMBLY DIAGRAM

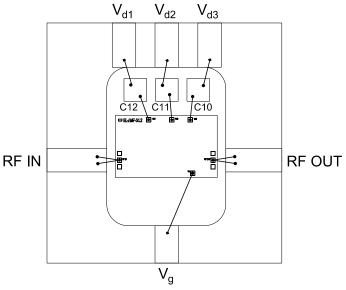



Figure 4. AVA-17303-D+ Assembly Diagram

- Refer to the table in Figure 3. for more details on the passive components
- Bond wire diameter: 1 mil
- Bond wire lengths from Die Pad to PCB at RF IN & RF OUT ports: 18 ± 2 mils
- Bond wire lengths from Die Pad to C10, C11, & C12: 28 ± 2 mils
- Bond wire lengths from C10, C11, & C12 to PCB at  $V_{d1}$ ,  $V_{d2}$ , and  $V_{d3}$  ports: 24 ± 2 mils ٠
- Bond wire lengths from Die Pad to PCB at  $V_{\alpha}$  port: 59 ± 2 mils
- Typical Gap from Die edge to PCB edge: 3 mils
- PCB thickness and material: 10 mil Rogers RO4350 (Thickness: 1 oz copper on each side)

## ASSEMBLY AND HANDLING PROCEDURE

1. Storage

2

Die should be stored in a dry nitrogen purged desiccator or equivalent.



MMIC pHEMT amplifier die are susceptible to electrostatic and mechanical damage. Die are supplied in anti-static protected material, which should be opened only in clean room conditions at an appropriately grounded anti-static workstation.

3. **Die Handling and Attachment** 

**FSD** Precautions

Devices require careful handling using tools appropriate for manipulating semiconductor chips. It is recommended to handle the chips along the edges with a custom designed collet. The surface of the chip has exposed air bridges and should not be touched with a vacuum collet, tweezers or fingers. The die mounting surface must be clean and flat. Using conductive silver-filled epoxy, apply sufficient adhesive to meet the required bond line thickness, fillet height and coverage around the total periphery of the device. The recommended epoxy is Unimec H9890-6A or equivalent. Parts should be cured in a nitrogen-filled atmosphere per manufacturer's recommended cure profile.

4 Wire Bonding

Openings in the surface passivation above the gold bond pads are provided to allow wire bonding to the die. Thermosonic bonding is recommended with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. The suggested interconnect is pure gold, 1 mil diameter wire. Bonds are recommended to be made from the bond pads on the die to the package or substrate. All bond wire length and bond wire height should be kept as short as possible, unless specified by design, to minimize performance degradation due to undesirable series inductance.

## **Mini-Circuits**



# Medium Power Amplifier AVA-17303-D+

#### 17 to 31.5 GHz High Linearity Driver Mini-Circuits 50Ω

**MMIC DIE** 

#### **CLICK HERE** ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASHBOARD

|                                        | Data                                                                                        |               |  |
|----------------------------------------|---------------------------------------------------------------------------------------------|---------------|--|
| Performance Data & Graphs              | Graphs                                                                                      |               |  |
|                                        | S-Parameter (S2P Files) Data Set (.zip file)                                                |               |  |
| Case Style                             | Die                                                                                         |               |  |
| RoHS Status                            | Compliant                                                                                   |               |  |
|                                        | Quantity, Package                                                                           | Model No.     |  |
|                                        | Gel - Pak: 5, 10, 50, 100 KGD*                                                              | AVA-17303-DG+ |  |
| Die Ordering and Packaging Information | Medium <sup>†</sup> , Partial wafer: KGD*<630                                               | AVA-17303-DP+ |  |
|                                        | Full wafer <sup>†</sup>                                                                     | AVA-17303-DF+ |  |
|                                        | <sup>†</sup> Available upon request contact sales representative. Refer to <u>AN-60-067</u> |               |  |
| Die Marking                            | EL-AMP-34_2                                                                                 |               |  |
| Environmental Ratings                  | ENV80                                                                                       |               |  |

\* Known Good Die ("KGD") means that the die in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such die fall within a predefined range. While DC testing is not definitive, it does provide a high degree of confidence that die are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits

contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.ht D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an as is basis, with all faults.

E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of known good die (KGD) (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on KGD. F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

