

50Ω 2 to 18 GHz

THE BIG DEAL

- Wideband, 2 to 18 GHz
- Flat Gain 16.6 ± 0.65 dB
- P1dB, +19.6 dBm Typ. at 10 GHz
- OIP3, +27.4 dBm Typ. at 10 GHz

П +RoHS Compliant The +Suffix identifies RoHS Compliance. See our website for methodologies and qualifications

SEE ORDERING INFORMATION ON THE LAST PAGE

APPLICATIONS

- 5G MIMO and Back Haul Radio Systems
- Satellite Communications
- Test and Measurement Equipment
- · Radar, EW, and ECM Defense Systems

PRODUCT OVERVIEW

The AVA-2183-D+ is an amplifier die that operates from 2 to 18 GHz that is fabricated on a GaAs pHEMT MMIC process. The Amplifier provides 16.6 dB of Gain, +27.3 dBm OIP3 and +18.7 dBm Output Power at 1 dB Compression point with 15.5 dB typical Return Loss while requiring +4 V and 210 mA DC power. Gain flatness is ±0.65 dB across the operating bandwidth. The Amplifier is ideal for use in very wideband ECM, Test & Measurement and Microwave communications systems.

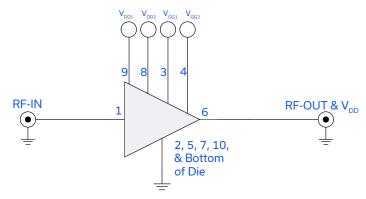
KEY FEATURES

Feature	Advantages
Wideband: 2 to 18 GHz • 15.9 dB Gain Typ. at 2 GHz • 16.9 dB Gain Typ. at 18 GHz	Suitable for wide bandwidth defense and test and measurement application as well as narrow band performance driven applications.
Good P1dB & OIP3 • +19.6 dBm P1dB Typ. at 10 GHz • +27.4 dBm OIP3 Typ. at 10 GHz	Suitable as a driver amplifier in receiver/transmitter chains.
High Reverse Isolation	Isolates adjacent circuitry without need for an external expensive isolator.
Input and Output Return Loss	Eliminates need for external matching circuit providing published Return Loss.
Unpackaged Die	Suitable for chip and wire hybrid assemblies.

50Ω 2 to 18 GHz

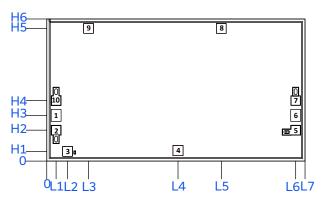
ELECTRICAL SPECIFICATIONS¹ AT +25°C, V_{DD} = +4 V, I_{DD} = 210 mA & Z_{O} = 50 Ω UNLESS NOTED OTHERWISE

n i					
Parameter	Condition (GHz)	Min.	V_{DD} = +4 V Typ. Max.		Units
Frequency Range		2		18	GHz
	2		15.9		
	5		16.1		
Gain	10		17.2		dB
	15		16.7		
	18		16.9		
	2		12		
	5		16		
Input Return Loss	10		14		dB
	15		11		
	18		14		
	2		18		
	5		20		
Output Return Loss	10		19		dB
	15		16		
	18		15		
Reverse Isolation	2 - 18		47.4		dB
	2		+18.9		
	5		+19.3		
Output Power at 1 dB Compression	10		+19.6		dBm
	15		+18.2		
	18		+17.6		
	2		+31.2		
	5		+29.1		
Output Third-Order Intercept $(P_{OUT} = 0 \text{ dBm/Tone})$	10		+27.4		dBm
(F _{OUT} – 0 dBill/ lolle)	15		+25.2		
	18		+23.7		
	2		6.8		
	5		6.4		
Noise Figure	10		5.5		dB
	15		4.7		
	18		5.1		
Device Operating Voltage (V _{DD})			+4		V
Device Operating Current (I _{DD})			210		mA
Device Gate Voltage (V _{GG})			-0.46		V
Device Gate Current (I _{GG})			-0.2		μА
Thermal Resistance, Junction-to-Ground Lead (ΘJC)			38.8		°C/W


50Ω 2 to 18 GHz

ABSOLUTE MAXIMUM RATINGS²

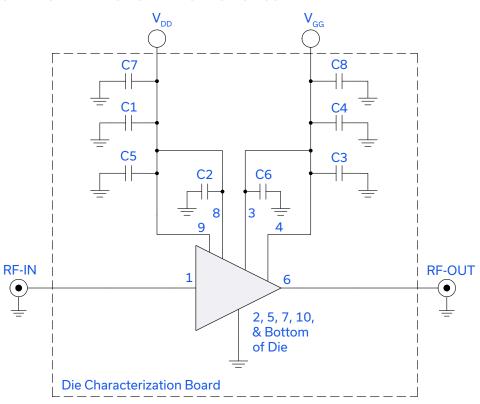
Parameter	Ratings			
Operating Temperature (Ground Lead) ³	-40°C to +85°C			
Storage Temperature ⁴	-65°C to +150°C			
Junction Temperature ⁵	+150°C			
Power Dissipation	1.7 W			
Input Power (CW)	+23 dBm (5 minutes max.) +14 dBm (continuous)			
DC Voltage on RF-OUT	+7 V			
Current I _{GG}	-5 mA to 0 mA			
Current I _{DD}	320 mA			
DC Voltage on V _{DD} (V _{DD1} & V _{DD2})	+7 V			
DC Voltage on V _{GG} (V _{GG1} & V _{GG2})	-1.5 V to -0.2 V			


- 2. Permanent damage may occur in any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.
- 3. Bottom of die.
- 4. For die shipped in Gel-Pak, see ENV-80 (limited by packaging).
- 5. Hot spot temperature on top of die.

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description
RF-IN	1	RF Input Pad
GROUND	2, 5, 7, 10, & Bottom of Die	The bond pads are connected to backside through vias and do not require wire-bond connections to ground.
V _{GG1}	3	Gate Bias Pad #1
V_{GG2}	4	Gate Bias Pad #2
RF-OUT	6	RF Output Pad
V _{DD2}	8	Drain Bias Pad #2
V _{DD1}	9	Drain Bias Pad #1

BONDING PAD POSITION


DIMENSION IN µM, TYP.

L1		L2	L3		L	L4		L5		L6		L7
95	2	211		422	13	1328		1767		2519		2614
H1		H2	H2 I		H3	H4			H5			H6
98		312		4	462 612		2	1343			1438	
Thickness Die siz		e	Pad size			Pad size 2,3,5,7,8,9 & 10		ſ	Pad size 4			
100 2614x1438		93x	93x113		93x93			96x96				

2 to 18 GHz 50Ω

CHARACTERIZATION & APPLICATION CIRCUIT

Component	Value	Size	Part Number	Manufacturer
C2, C3, C5 & C6	100 pF	22x22 mil	MA4M3100	MACOM
C1 & C4	0.47 uF	0402	GRM155R71A474KE01D	Murata
C7 & C8	10 uF	1206	CL31B106KBHNNNE	Samsung

Fig.1: Characterization & Application Circuit

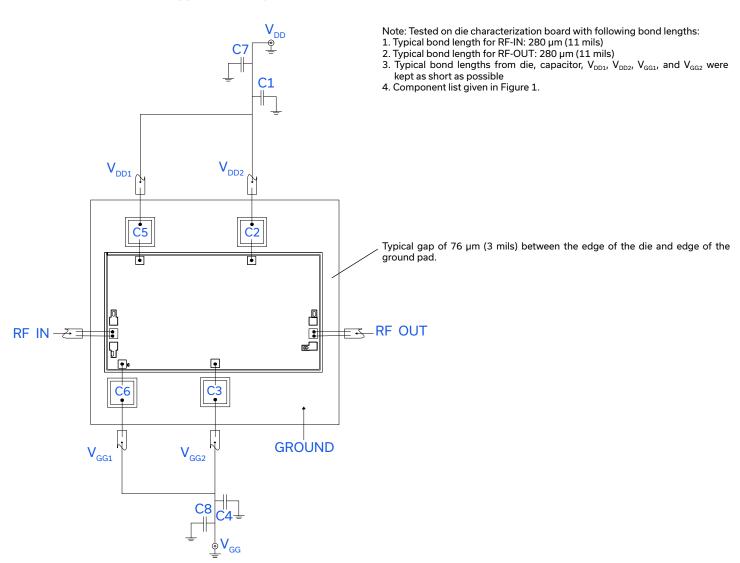
Note: This block diagram is used for characterization (Die is attached and wire-bonded on a die characterization test board). Gain, Return Loss, Output Power at 1 dB Compression (P1dB), Output IP3 (OIP3) and Noise Figure are measured using Agilent's N5242A PNA-X Microwave Network Analyzer.

Conditions:

- 1. $V_{DD} = +4 V$
- 2. V_{GG} is set to obtain desired I_{DD} as shown in specification table. 3. Gain and Return Loss: P_{IN} = -25 dBm
- 4. Output IP3 (OIP3): Two Tones, spaced 1 MHz apart, 0 dBm/Tone at Output.

Power ON Sequence:

- 1. Set V_{GG} = -1.3 V. Apply V_{GG} . 2. Set V_{DD} = +4 V. Apply V_{DD} . 3. Increase V_{GG} to obtain desired I_{DD} as shown in specification table.
- 4. Apply RF Signal


Power OFF Sequence:

- 1. Turn off RF Signal.
- 2. Adjust V_{GG} down to -1.3 V. 3. Turn off V_{DD} .
- 4. Turn off V_{GG}.

2 to 18 GHz 50Ω

ASSEMBLY DIAGRAM

ASSEMBLY AND HANDLING PROCEDURE

Storage

Die should be stored in a dry nitrogen purged desiccators or equivalent.

MMIC PHEMT amplifer die are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be open in clean room conditions at an appropriately grounded anti-static workstation.

Devices need careful handling using correctly designed collets, it is recommended to handle the chip along the edges with a custom design collet. The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are Ablestik 84-1 LMISR4 or equivalents. Apply sufficent epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. The surface of the chip has exposed air bridges and should not be touched with vacuum collet, tweezers

Wire Bonding

Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the Die gold bond pads. Thermo-sonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1mil diameter. Bonds must be made from the bond pads on the die to the packaged or substrate. All bond wire length and bond wire height should be kept as short as possible unless specified by the Assembly Drawing to minimize performance degradation due to undesirable series inductance.

2 to 18 GHz 50Ω

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. CLICK HERE

	Data Table					
Performance Data	Swept Graphs					
	S-Parameter (S2P Files) Data Set with and without port extension (.zip file)					
Case Style	Die					
Die Ordering and Packaging Information	Quantity, Package Gel - Pak: 5,10,50,100 KGD* Medium [†] , Partial wafer: KGD*<570 Full wafer † Available upon request contact sales rep Refer to AN-60-067	Model No. AVA-2183-DG+ AVA-2183-DP+ AVA-2183-DF+ presentative				
Die Marking	EL-AMP-11-2					
Environmental Ratings	ENV80					

Known Good Die ("KGD") means that the die in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such die fall within a predefined range. While DC testing is not definitive, it does provide a higher degree of confidence that die are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained there in. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minic
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an
- Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Die (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Die
- Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products

