Low Current, Wideband, Ceramic Monolithic Amplifier

CMA-183L+

50 Ω DC to 18 GHz

The Big Deal

- Ceramic, hermetically sealed, nitrogen filled
- · Super Wideband, DC to 18 GHz, usable to 20 GHz
- Excellent Gain Flatness ±2.1dB
- · Low Current, 20 mA typ

CASE STYLE: LZ1737

MIL Screening Available Please consult Applications Dept.

Product Overview

The CMA-183L+ is a low current, wideband gain block that operates up to 20 GHz fabricated using highly reliable GaAs HBT process. This Darlington pair amplifier delivers excellent gain flatness, good return loss, low current with acceptable P1dB and OIP3 across a wide bandwidth without the need of external matching network. It has highly repeatable performance from lot to lot and it is packaged in an LTCC hermetic package utilizing fully automated and highly reliable manufacturing processes. CMA-series amplifiers are capable of meeting MIL requirements for gross leak, fine leak, thermal shock, vibration, acceleration, mechanical shock, and HTOL. The tests can be performed if requested.

Key Features

Feature	Advantages
Super Wideband: DC to 18 GHz, usable to 20 GHz	General purpose wideband amplifier is suitable for various applications.
Low Current, 20 mA typ.	Low current consumption is ideal for use in amplifier chain.
Excellent gain flatness: ±0.7 dB to 10 GHz ±2.1 dB to 18 GHz	Minimize the need for gain slope comensation to achieve flat gain
No external matching component required	CMA-183L+ provides typical input & output return loss of 15 dB up to 20 GHz with- out the need for any external matching components.
Ceramic, hermetic package	Highly reliable hermetic package provides predictable and repeatable performance in military applications including ground, air, and ship requirements, and small size 2.25 x 2.25 mm
Very small size 2.25 x 2.25 x 1.1mm	Small size fits into tiny space on motherboard of PCB saving cost

Low Current, Wideband, Ceramic Monolithic Amplifier

DC-18 GHz

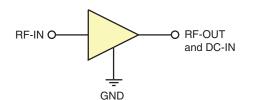
Product Features

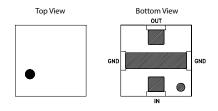
- · Ceramic, hermetically sealed, high reliability
- Super Wideband, DC to 18 GHz, usable to 20 GHz
- Low Current, 20 mA
- Excellent Gain flatness, ±2.1 dB
- Repeatable performance (HBT Process)

Typical Applications

- Instrumentation
- Cable infrastructure
- 5G

CMA-183L+


CASE STYLE: LZ1737


+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

The CMA-183L+ is a low current, wideband gain block that operates up to 20 GHz fabricated using highly reliable GaAs HBT process. This Darlington pair amplifier delivers excellent gain flatness, good return loss, low current with acceptable P1dB and OIP3 across a wide bandwidth without the need of external matching network. It has highly repeatable performance from lot to lot and it is packaged in an LTCC hermetic package utilizing fully automated and highly reliable manufacturing processes.

simplified schematic and pad description

Function	Pad Number	Description
RF IN	IN	RF-INPUT
RF-OUT and DC-IN	OUT	RF OUTPUT AND DC INPUT
GND	GND	GROUND

Monolithic MMIC Amplifier

Electrical Specifications at 25°C. Vs=5V. R=50Ω unless noted

Parameter	Condition		$V_s = 5V^1$		Unite
Parameter	(MHz)	Min.	Тур.	Max.	Units
Frequency Range ^₅		10		18000	MHz
	10	_	15.3	_	
	5000	-	14.2	_	
Gain	8000	11.9	14.0	15.4	dB
Guilt	12000	-	13.8	-	üD
	18000	-	11.1	-	
	20000		9.8		
	10		16		
	5000		9		
Input Return Loss	8000		13		dB
	12000		27		
	18000		20		
	20000		10		
	10		13		
	5000		9		
Output Return Loss	8000		14		dB
Ouiput Return Loss	12000		16		ub
	18000		13		
	20000		9		
Reverse Isolation	1000		17.1		
	10		7.0		
	5000		5.4		
	8000		5.6		
Output Power @1dB compression	12000		5.0		dBm
	18000		1.4		
	20000		0.1		
	10		20.1		
	5000		17.5		
Output IP3 ²	8000		15.8		dBm
	12000		13.3		
	18000		10.2		
	20000		8.8		
	10		6.5		
	5000		5.5		
	8000		5.3		
Noise Figure	12000		4.9		dB
	18000		5.2		
	20000		5.5		
DC Supply (Vs)	20000	4.75	5.0	5.25	V
Device Operating Current		4.75	20	24	mA
DC Current Variation Vs. Temperature ³			60		µA/°C
DC Current Variation Vs. Voltage ⁴			0.018		mA/mV
Thermal Resistance, junction-to-ground at 85°C stage temp.			367		°C/W
mermai nesistance, junction-to-ground at 65 C stage temp.			307		0/10

1. Measured on Mini-Circuits Characterization test board TB-668+. See Characterization Test Circuit (Fig. 1)
2. Tested at Pout=-5dBm / tone.
3. (Current at 105°C — Current at -55°C)/160
4. (Current at 5.25V - Current at 4.75V)/((Voltage difference)*1000)
5. Low frequency cut-off determined by external coupling capacitors & RF choke.

Absolute Maximum Ratings⁶

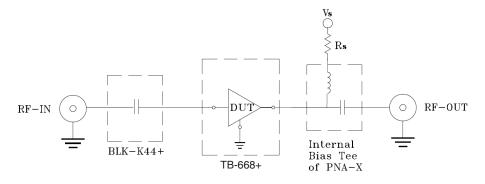
Parameter	Ratings		
Operating Temperature (ground lead)	-55°C to 85°C		
Storage Temperature	-65°C to 125°C		
Junction Temperature	150°C		
Total Power Dissipation	0.2 W		
Input Power (CW)	+22 dBm (5 minutes max.) +8 dBm (continuous)		
Vs Supply Voltage (Pin OUT)	6V		

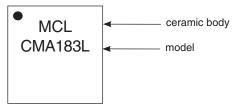
Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

NON-CATALOG

Monolithic MMIC Amplifier

Characterization Test Circuit




Fig 1. Characterization Circuit

Note: This block diagram is used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-668+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA- X microwave network analyzer. RS=49.9 ohms, Vs = 5V Conditions:

1. Gain and Return loss: Pin= -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -5 dBm/tone at output

Product Marking

Additional Detailed Technical Information

additional information is available on our dash board. To access this information <u>click here</u>

	Data Table		
Performance Data	Swept Graphs		
	S-Parameter (S2P Files) Data Set (.zip file)		
Case Style	LZ1737 Ceramic package Terminal finish: NiPdAu		
Tape & Reel	F108		
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500 or 1K, 2K devices.		
Suggested Layout for PCB Design	PL-386		
Evaluation Board	TB-668+		
Environmental Ratings	ENV-68		

ESD Rating

Human Body Model (HBM): Class 1A (Pass 250V) in accordance with ANSI/ESD STM 5.1 - 2001

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

