MMIC

Power Splitter/Combiner Die

EPQ-113-D+

2 Way-90° 50Ω 5 to 11 GHz

The Big Deal

- · Wideband, 5 to 11 GHz
- Good Isolation and Return Loss
- Highly repeatable performance (GaAs based design)
- · No external termination required
- High Power handling (>30 dBm)

Product Overview

Mini-Circuits' EPQ-113-D+ is a wideband 5-11 GHz, 90° hybrid die . It splits an input signal into two output signals with quadrature phase shift between them. It provides low loss, wideband in a small layout size and handles high power with good VSWR.

Key Features

Feature	Advantages		
Low Phase and Amplitude Unbalance	$3.7~{\rm deg.}$ and $0.8~{\rm dB}$ unbalance make this 90° hybrid applicable for use in higher level integrated components such as image reject mixers, single sideband modulators, phase shifters, variable attenuators, and balance amplifiers.		
High Power Handling	Capable of operating up to 32 dBm, MMIC structure of EPQ-113-D+ makes this 90° hybrid a robust, rugged product that can be used effectively in either the transmit or receive paths.		
Unpackaged Die	Enables user to integrate it directly into hybrids.		

MMIC

Power Splitter/Combiner Die EI

EPQ-113-D+

2 Way-90° 50Ω 5 to 11 GHz

Features

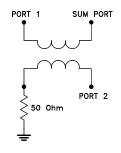
- Low insertion loss, 0.6 dB typ. at 7-9 GHz
- Good isolation, 19 dB typ. at 7-9 GHz
- High power handling (>30 dBm)

Mon2

+RoHS Compliant

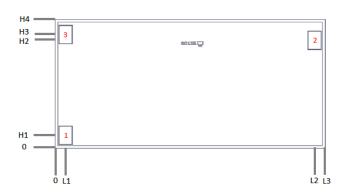
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Ordering Information: Refer to Last Page


Applications

- Balanced amplifiers
- Modulators
- Electronic Attenuator
- Electronic Phase Shifter

General Description


Mini-Circuits' EPQ-113-D+ is a wideband 5-11 GHz, 90° hybrid die . It splits an input signal into two output signals with quadrature phase shift between them. It provides low loss, wideband in a small layout size and handles high power with good VSWR.

Simplified Schematic and Pad Description

Pad#	Function			
1	Sum Port			
2	Port 1 (0°)			
3	Port 2 (+90°)			

Bonding Pad Position

Dimensions in µm, Typical									
L1	L2	L3	H1	H2	НЗ	H4	Thickness	Die Size	Bond Pad Size
103	2547	2650	128	1063	1120	1270	100	2650 x 1270	125 x 175

Electrical Specifications¹ at 25°C, 50 Ω

Parameter	Frequency (MHz)	Min.	Тур.	Max.	Unit
Frequency Range		5000		11000	MHz
	5000 - 6000		0.5		
	6000 - 7000		0.6		
Insertion Loss, (Avg. of Mainline & Coupled) above 3dB	7000 - 9000		0.6		dB
(779. of Marilline & Godpled) above odb	9000 - 10000		0.7		
	10000 - 11000		0.8		
	5000 - 6000		19		
	6000 - 7000		19		
Isolation	7000 - 9000		19		dB
	9000 - 10000		19		
	10000 - 11000		18		
	5000 - 6000		0.4		
	6000 - 7000		0.4		
Amplitude Unbalance	7000 - 9000		0.8		dB
	9000 - 10000		0.7		
	10000 - 11000		0.2		
	5000 - 6000		1.9		
	6000 - 7000		2.4		
Phase Unbalance (Deviation from 90°)	7000 - 9000		3.7		Degree
(20114101111011100)	9000 - 10000		4.1		
	10000 - 11000		4.2		
	5000 - 6000		1.2		
	6000 - 7000		1.2		
Input VSWR	7000 - 9000		1.2		:1
	9000 - 10000		1.2		
	10000 - 11000		1.3		
	5000 - 6000		1.2		
	6000 - 7000		1.2		
Output VSWR (0°&90°)	7000 - 9000		1.1		:1
	9000 - 10000		1.1		
	10000 - 11000		1.2		

^{1.} Tested on characterization test board TB-961-113+ in 4x4 mm MCLP package.

Maximum Ratings

Parameter	Ratings	
Operating Temperature	-40°C to 85°C	
Power Input (as a splitter)	32 dBm (5 minute max.)	
Internal Dissipation	30 dBm (continuous)	

Permanent damage may occur if any of these limits are exceeded.

Assembly Diagram

Assembly and Handling Procedure

- 1. Storage
 - Dice should be stored in a dry nitrogen purged desiccators or equivalent.
- 2. ESD

MMIC dice are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be opened in clean room conditions at an appropriately grounded anti-static workstation. Devices need careful handling using correctly designed collets, vacuum pickup tips or sharp antistatic tweezers to deter ESD damage to dice.

- 3. Die Attach
 - The Die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are DieMat DM6030HK-PT/H579 or Ablestik 84-1LMISR4. Apply sufficient epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total Die periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. It is recommended to use antistatic Die pick up tools only.
- 4. Wire Bonding
 - Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the dice gold bond pads. Thermosonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1 mil diameter. Bonds must be made from the bond pads on the Die to the package or substrate. All bond wires should be kept as short as low as reasonable to minimize performance degradation due to undesirable series inductance.

Additional Detailed Technical Information additional information is available on our dash board.					
	Data Table				
Performance Data	Swept Graphs				
	S-Parameter (S3P Files) Data Set with and without port extension(.zip file)				
Case Style	Die				
	Quantity, Package	Model No.			
Die Ordering and packaging information (Note 5)	Small, Gel - Pak: 5,10, 50, 100 KGD* Medium [†] , Partial wafer: <350 Large [†] , Full wafer	EPQ-113-DG+ EPQ-113-DP+ EPQ-113-DF+			
mormation (Note 3)	[†] Available upon request contact sales representative				
	Refer to <u>AN-60-067</u>				
Environmental Ratings	ENV-80				

^{*}Known Good Dice ("KGD") means that the dice are taken from PCM good wafer and are visually inspected. While this is not definitive, it does help to provide a higher degree of confidence that dice are capable of meeting typical RF electrical parameters specified by Mini-Circuits."

ESD Rating**

Human Body Model (HBM): Class 1A (250 to 500V) in accordance with ANSI/ESD STM 5.1 - 2001

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an "As is" basis, with all faults.
- E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Dice (including, without limitation, proper ESD preventative measures, Die preparation, Die attach, wire bond ing and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Dice.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

^{**} Tested in industry standard, 4x4mm MCLP package.