

# SP2T RF Switch

HSWA2-63DR+

Absorptive RF Switch with internal driver Single Supply Voltage, +2.7V to +5.5V

#### THE BIG DEAL

- High Isolation, 69 dB at 1.0 GHz
- · Low insertion loss, 0.95 dB typ. at 1 GHz
- · High Input IP3, +65 dBm
- Fast switching, 300 ns typ.
- Tiny Size, 4x4mm
- · Immune to latch-up



CASE STYLE: DG983-3

Generic photo used for illustration purposes only

+RoHS Compliant
The +Suffix identifies RoHS Compliance,
See our website for methodologies and qualifications

#### **APPLICATIONS**

- Defense
- Test and Measurements
- Switch matrices

#### **PRODUCT OVERVIEW**

Mini-Circuits' HSWA2-63DR+ is a MMIC SPDT absorptive switch with an internal driver designed for wideband operation from 100 MHz to 6.0 GHz supporting many applications requiring high performance across a wide frequency range. This model provides excellent isolation, fast switching speed and high linearity in a tiny 4x4mm 20-Lead MCLP package. Produced using a unique CMOS process on silicon, it offers the performance of GaAs with the advantages of conventional CMOS devices. HSWA2-63DR+ provides a high level of ESD protection and excellent repeatability.

#### **KEY FEATURES**

| Feature                                                   | Advantages                                                                                                                                                                                                                                         |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wideband, 100 MHz to 6.0 GHz<br>Usable over 1kHz to 6 GHz | One model can be used in many applications, saving component count. Also ideal for wideband applications such as military and instrumentation. With lower input power it can operate over 1kHz to 6 GHz covering even wider applications           |
| Absorptive switch                                         | In the off condition, RF output ports which are not switched ON are terminated into $50\Omega$ . This enables proper impedance termination of the circuitry following the RF output ports, preventing any unintended action such as oscillation.   |
| High Isolation: T1 dB at 1000 MHz BdB at 6000 MHz         | High isolation significantly reduces leakage of power into OFF ports.                                                                                                                                                                              |
| High linearity, +65 dBm IIP3                              | High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multi-carrier environments such as CATV, or in the presence of strong interfering signal from adjacent circuitry or received by antenna. |
| Immune to Latch-up                                        | Unlike conventional CMOS devices, HSWA is immune to latch-up                                                                                                                                                                                       |
| Tiny size, 4 x 4mm MCLP package                           | Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.                                                                                                      |

PAGE 1 OF 5



# **MMIC** SP2T RF Switch

### HSWA2-63DR+

Absorptive RF Switch with internal driver Single Supply Voltage, +2.7V to +5.5V

### RF ELECTRICAL SPECIFICATIONS<sup>1</sup>, 100 MHz- 6 GHz, T<sub>AMB</sub>=25°C, V<sub>DD</sub>= +3.0V, 50 OHMS

| Parameter                                 | Condition (MHz) | Min. | Тур. | Max. | Units |
|-------------------------------------------|-----------------|------|------|------|-------|
| Frequency range                           |                 | 100  |      | 6000 | MHz   |
| Insertion loss <sup>2</sup>               | 100 - 1000      | _    | 0.95 | 1.15 |       |
|                                           | 1000 - 2000     | _    | 0.95 | 1.15 |       |
|                                           | 2000 - 3000     | _    | 1.0  | 1.2  | dB    |
|                                           | 3000 - 4000     | _    | 1.15 | 1.35 | ав    |
|                                           | 4000 - 5000     | _    | 1.25 | 1.55 |       |
|                                           | 5000 - 6000     | _    | 1.60 | 1.90 |       |
|                                           | 100 - 1000      | 69   | 71   | _    |       |
|                                           | 1000 - 2000     | 65   | 67   | _    |       |
| Isolation between Common port and RF1/RF2 | 2000 - 3000     | 63   | 68   | _    | dB    |
| Ports                                     | 3000 - 4000     | 62   | 67   | _    | ив    |
|                                           | 4000 - 5000     | 52   | 57   | _    |       |
|                                           | 5000 - 6000     | 44   | 48   |      |       |
|                                           | 100 - 1000      | 67   | 69   | _    |       |
|                                           | 1000 - 2000     | 63   | 64   | _    |       |
| Isolation between RF1 and RF2 Ports       | 2000 - 3000     | 59   | 62   | _    | dB    |
| Isolation between RF1 and RF2 Ports       | 3000 - 4000     | 60   | 64   | _    | ив    |
|                                           | 4000 - 5000     | 54   | 60   | _    |       |
|                                           | 5000 - 6000     | 44   | 50   |      |       |
|                                           | 100 - 4000      | _    | 20   | _    |       |
| Return loss (All Ports)                   | 4000 - 5000     | _    | 15   | _    | dB    |
|                                           | 5000 - 6000     | _    | 13   |      | 1     |
| Input IP2                                 | 100 - 6000      | _    | 110  | _    | dBm   |
| Input IP3                                 | 100 - 6000      | 60   | 65   | _    | dBm   |
| 1.0 dB Input compression <sup>3</sup>     | 100 - 6000      | 33   | 35   | _    | dBm   |
| Thermal Resistance, junction-to-ambient   |                 |      | 78   |      | °C/W  |

#### DC ELECTRICAL SPECIFICATIONS

| Parameter                       | Min. | Тур. | Max. | Units |
|---------------------------------|------|------|------|-------|
| Supply voltage, V <sub>DD</sub> | 2.7  |      | 5.5  | V     |
| Supply current                  |      | 120  | 200  | μА    |
| Control voltage Low             | -0.3 |      | 0.6  | V     |
| Control voltage High            | 1.17 |      | 3.6  | V     |
| Control current                 |      | 9    | 12   | μА    |

- 1. Tested on Mini-Circuits' test board TB-919+, using Agilent's N5230A network analyzer (see Characterization test circuit, Fig. 2).
- 2. Insertion loss values are de-embedded from test board loss.
- ${\bf 3.\ Do\ not\ exceed\ RF\ input\ power\ as\ shown\ in\ Absolute\ Maximum\ Ratings\ table.}$

#### **SWITCHING SPECIFICATIONS**

| Parameter                                | Condition                                              | Min. | Тур. | Max. | Units             |
|------------------------------------------|--------------------------------------------------------|------|------|------|-------------------|
| Switching time 50% control to 90/10%RF   | fctrl=1KHz                                             |      | 300  | 400  | nS                |
| Video feed-through                       | V <sub>DD</sub> =3V<br>Vctrl High=1.8V<br>Vctrl Low=0V |      | 27   |      | mV <sub>p-p</sub> |
| Rise/Fall time<br>10 to 90% or 90 to 10% | Veni Low-ov                                            |      | 67   |      | nS                |

#### Power On/ Power Off Sequence:

Note: Vctrl and  $V_{\text{DD}}$  voltages are independent from one another. Vctrl voltages may be turned on in any order and at any time in this sequence.

- 1. Make sure RF power is OFF.
- 2. Set VDD to 0V.
- 3. Set VDD from 0V to recommended supply voltage range between +2.7V to +5.5V in a single voltage step with transition time <500 usec. Do not use intermediate voltage steps.
- 4. Turn ON RF power.

#### Power Off:

Note: Vctrl and  $V_{\text{DD}}$  voltages are independent from each other. Vctrl voltages can be turned off or set to 0V in any order and at any time in this sequence.

- 1. Turn OFF RF power.
- 2. Set  $V_{DD}$  from selected operating voltage to 0V or off in a single voltage step. Do not use intermediate voltage steps.





# SP2T RF Switch

# HSWA2-63DR+

Absorptive RF Switch with internal driver Single Supply Voltage, +2.7V to +5.5V

#### MAXIMUM RATINGS<sup>4</sup>

| Parameter                               | Ratings             |  |
|-----------------------------------------|---------------------|--|
| Operating Temperature                   | -40°C to +105°C     |  |
| Storage Temperature                     | -65°C to 150°C      |  |
| V <sub>DD</sub> , Supply Voltage        | -0.3 to 5.5V        |  |
| Voltage Control                         | -0.3V Min. 3.6 Max. |  |
| RF Input Power, CW <sup>5</sup>         | +28 dBm             |  |
| RF Power into output ports <sup>5</sup> | +20 dBm             |  |
| Maximum Die Junction Temperature        | 150°C               |  |

 $<sup>{\</sup>bf 4}.$  Operation of this device above any of these conditions may cause permanent damage.

#### **POWER RATING**

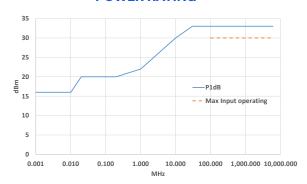


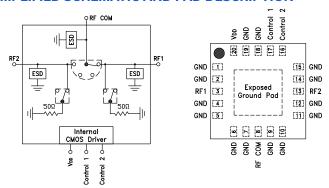

Figure 1. P1dB and Max Input Operating Power vs. Frequency

#### **TRUTH TABLE**

| Mode          | State of Control Voltage |           |  |
|---------------|--------------------------|-----------|--|
| Mode          | Control 1                | Control 2 |  |
| RF COM-RF1 ON | HIGH                     | LOW       |  |
| RF COM-RF2 ON | LOW                      | HIGH      |  |
| ALL OFF       | LOW                      | LOW       |  |
| Unsupported   | HIGH                     | HIGH      |  |

<sup>5. 100%</sup> Duty Cycle, all band,  $50\Omega$ 




#### **MMIC**

# SP2T RF Switch

# HSWA2-63DR+

Absorptive RF Switch with internal driver Single Supply Voltage, +2.7V to +5.5V

#### SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION



| Function        | Pad<br>Number                   | Description           |
|-----------------|---------------------------------|-----------------------|
| RF COM          | 8                               | RF Common/ SUM port*  |
| RF1             | 3                               | RF out #1/In port #1* |
| RF2             | 13                              | RF out #1/In port #2* |
| Control 1       | 17                              | CMOS Control IN #1    |
| Control 2       | 16                              | CMOS Control IN #2    |
| V <sub>DD</sub> | 20                              | Supply voltage        |
| GND             | 1,2,4,7,9,10-12,<br>14,15,18,19 | Ground                |

<sup>\*</sup> Must be held at OVDC. If required add DC blocking capacitors on these ports.

#### **CHARACTERIZATION & APPLICATION CIRCUIT**

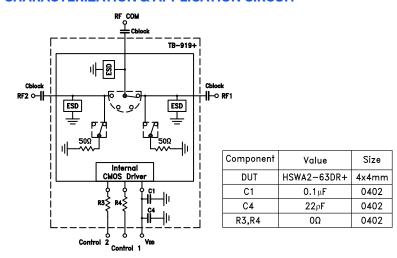
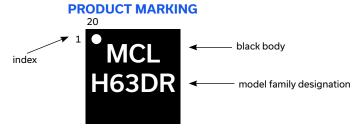




Figure 2. Block Diagram of test Circuit used for characterization (DUT soldered on Mini-Circuits' TB-919+)

Note: Cblock is required only when DC is present on RF ports.



Marking may contain other features or characters for internal lot control



# SP2T RF Switch

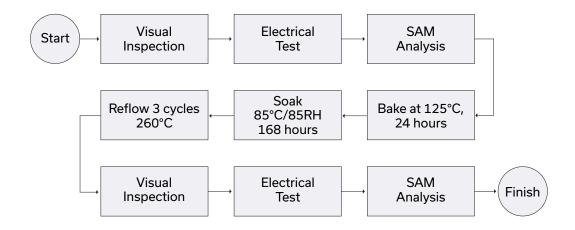
### HSWA2-63DR+

Absorptive RF Switch with internal driver Single Supply Voltage, +2.7V to +5.5V

#### ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS

**CLICK HER** 

| Performance Data                                     | Data Table                                                          |  |  |
|------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Performance Data                                     | Swept Graphs                                                        |  |  |
| Case Style                                           | DG983-3 Plastic package, exposed paddle , termination finish=NiPdAu |  |  |
| Tape & Reel<br>Standard quantities available on reel | F87<br>7" reels with 20, 50, 100, 200, 500, 1000 & 3000 devices     |  |  |
| Suggested Layout for PCB Design                      | PL-510                                                              |  |  |
| Evaluation Board                                     | TB-919+                                                             |  |  |
| Environmental Ratings                                | ENV83                                                               |  |  |


#### **ESD RATING**

Human Body Model (HBM): Class 2 (Pass 2000V) in accordance with MIL-STD-883, Method 3015

#### **MSL RATING**

Moisture Sensitivity: MSL3 in accordance with IPC/JEDEC J-STD-020D

#### **MSL TEST FLOW CHART**



#### NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html