

LHY-1H+

50Ω 0.05 to 6 GHz

THE BIG DEAL

- High IP3, +41 dBm typ. at 2 GHz, +5V
- Gain, 14.0 dB typ. at 2 GHz, 5V
- High P1 dB +22.5 dBm typ. at 2 GHz, +5V
- Low noise figure, 2.1 dB @2 GHz, +5V
- Usable to +4.0V
- · No external matching components required

Generic photo used for illustration purposes only

CASE STYLE: MC1630-1

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our website for methodologies and qualification

APPLICATIONS

- · Base station infrastructure
- Portable Wireless
- CATV & DBS
- MMDS & Wireless LAN
- LTE

PRODUCT OVERVIEW

LHY-1H+ (RoHS compliant) is an advanced wideband amplifier fabricated using E-PHEMT technology and offers extremely high dynamic range over a broad frequency range and with low noise figure. In addition, the LHY-1H+, unlike competitive models, is well matched (input and output) over a broad frequency range without the need for external matching components. Lead finish is tin-silver over nickel. It is enclosed in a 2x2 mm MCLP package for low parasitic interface.

KEY FEATURES

Feature	Advantages
Broad Band: 0.05 to 6.0 GHz	Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX
Extremely High IP3 versus DC power Consumption +41 dBm typical at 2 GHz	The LHY-1H+ matches industry leading IP3 performance relative to device size and power consumption. The combination of the design and E-PHEMT Structure provides enhanced linearity over a broad frequency range as evidence in the IP3 being typically 17 dB above the P 1dB point. This feature makes this amplifier ideal for use in: • Driver amplifiers for complex waveform up converter paths • Drivers in linearized transmit systems • Secondary amplifiers in ultra High Dynamic range receivers
Low Noise Figure: • 2.7 dB typ. up to 4 GHz • 3.1 dB typ. up to 6 GHz	A unique feature of the LHY-1H+ which separates this design from all competitors is the low noise figure performance in combination with the high dynamic range.
Small size 2 x 2 mm	Saves PCB area

ULTRA HIGH DYNAMIC RANGE Monolithic Amplifier

LHY-1H+

ELECTRICAL SPECIFICATIONS¹ AT 25°C, 50Ω, UNLESS NOTED OTHERWISE

B	Condition (GHz)	Vd=+5.0V			Vd=+4.5V	Vd=+4.0V	
Parameter		Min.	Тур.	Max.	Тур.	Тур.	Units
Frequency Range		0.05		6	0.05-6	0.05-6	GHz
	0.05	16.0	17.7	19.6	17.5	17.3	dB
Gain	0.8	14.3	15.8	17.5	15.7	15.4	
	2.0	_	14.0	_	13.8	13.6	
	3.0	_	12.4	_	12.2	11.9	
	4.0	9.9	10.9	12.0	10.7	10.4	
	6.0	_	8.5	_	8.3	8.0	
	0.05	_	11.1	_	11.0	10.6	
	0.8	12.5	15.5	_	15.3	14.9	
	2.0	_	10.9	_	10.8	10.6	
Input Return Loss	3.0	_	9.2	_	9.1	8.9	dB
	4.0	_	7.8	_	7.7	7.6	
	6.0	_	6.7	_	6.7	6.7	
	0.05		14.1	_	14.0	13.8	
	0.03	16.0	21.0	_	20.6	20.0	
	2.0	16.0	18.8	_	18.0	16.8	
Output Return Loss			1	_	l .		dB
	3.0	_	17.3	_	16.6	15.4	
	4.0	_	16.2	_	15.4	14.3	
B 1 1 2	6.0	_	13.7	_	13.3	12.6	I.D.
Reverse Isolation	2.0		19.3		19.1	18.9	dB
	0.05	20.0	22.7	_	21.4	19.9	
	0.8	20.0	22.6	_	21.4	19.9	dBm
Output Power @1 dB Compression	2.0	20.0	22.5	_	21.3	19.8	
	3.0	_	22.8	_	21.5	19.9	
	4.0	_	22.7	_	21.5	20.0	
	6.0	_	22.3	_	21.2	19.7	
	0.05	_	40.1	_	37.9	34.6	
	0.8	37.0	40.0	_	39.7	35.1	
Output IP3	2.0	_	41.0	_	36.3	33.0	dBm
Output IP3	3.0	_	41.6	_	36.2	32.6	
	4.0	_	40.8	_	35.7	32.2	
	6.0	_	39.4	_	35.4	31.9	
	0.05	_	1.6	_	1.5	1.4	dB
	0.8	_	1.8	_	1.7	1.7	
	2.0	_	2.1	_	2.0	2.0	
Noise Figure	3.0	_	2.3	_	2.3	2.2	
	4.0	_	2.6	_	2.4	2.4	
	6.0	_	3.1	_	3.1	2.8	
Device Operating Voltage		+4.8	+5.0	+5.2	+4.5	+4.0	V
Device Operating Current	1	_	144	165	116	88	mA
Device Current Variation vs. Temperature ²			113	100	136	152	μΑ/°C
Device Current Variation vs. Femperature Device Current Variation vs Voltage			0.059		0.057	0.056	mA/mV
Thermal Resistance, Junction-to-Ground Lead			55		55	55	°C/W

^{1.} Measured on Mini-Circuits Characterization test board TB-621+. See Characterization Test Circuit (Fig. 1) 2. (Current at $85^{\circ}C$ — Current at $-45^{\circ}C$)/130

MAXIMUM RATINGS³

Parameter	Ratings	
Operating Temperature (ground lead)	-40°C to 85°C	
Storage Temperature	-65°C to 150°C	
Operating Current at +5V	210 mA	
Power Dissipation	1 W	
Input Power (CW)	+24 dBm	
DC Voltage on Pad 5	+6 V	

^{3.} Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

LHY-1H+

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description
RF-IN	2	RF input pad
RF-OUT and DC-IN	5	RF output and bias pad
GND	1,3,4,6 paddle	Connections to ground.

CHARACTERIZATION TEST CIRCUIT

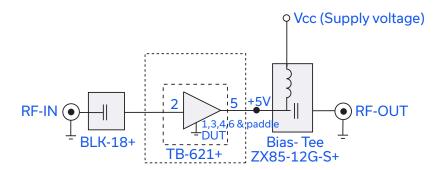


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-621+)

Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 5 dBm/tone at output.

LHY-1H+

RECOMMENDED APPLICATION CIRCUIT

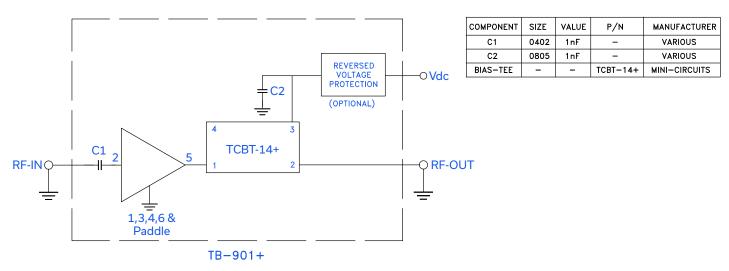
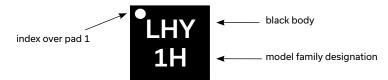



Fig 2. Test Board includes case, connectors, and components soldered to PCB.

PRODUCT MARKING

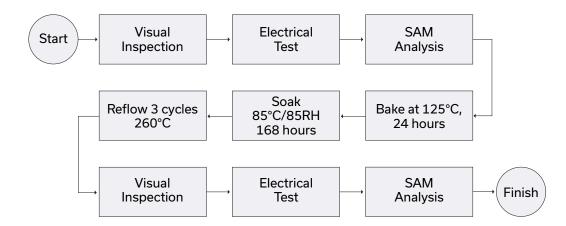
Marking may contain other features or characters for internal lot control

LHY-1H+

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS

CLICK HERE

Performance Data	Data Table Swept Graphs S-Parameter (S2P Files) Data Set (.zip file)	
Case Style	MC1630-1 (2x2 mm MCLP) Plastic package, exposed paddle lead finish: tin-silver over nickel	
Tape & Reel Standard quantities available on reel	F66 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices.	
Suggested Layout for PCB Design	PL-493	
Evaluation Board	TB-901+	
Environmental Ratings	ENV08T1	


ESD RATING

Human Body Model (HBM): Class 1B (500 to <1000V) in accordance with ANSI/ESD STM 5.1 - 2001 Machine Model (MM): Class M1 (>25V) in accordance with ANSI/ESD STM5.2-1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp