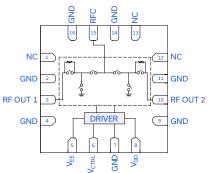


PDT RF Switch

Mini-Circuits DC to 30 GHz Absorptive RF Switch with Internal Driver 50 0

THE BIG DEAL


- Wideband, DC to 30 GHz
- Low Insertion Loss, Typ. 1.0 dB
- High Isolation, Typ. 65 dB
- High Input IP3, Typ. +48 dBm
- Fast Rise/Fall Time, Typ. 6.9 ns/7.1 ns
- 3x3 mm, 16-Lead QFN-Style Package

M3SWA2-34DR+

Generic photo used for illustration purposes only

FUNCTIONAL DIAGRAM

APPLICATIONS

- Radar, EW and ECM Defense Systems
- Communication Infrastructure •
- Test and Measurement

PRODUCT OVERVIEW

Mini-Circuits' M3SWA2-34DR+ is a GaAs MMIC SPDT absorptive switch with an internal driver designed for wideband operation from DC to 30 GHz. This switch enables fast, nano-second switching across a wide frequency range with minimum gate lag effects. This model provides excellent isolation, high linearity and is capable of withstanding +27 dBm RF input power. It is packaged in a small 3x3 mm QFN-Style package for ease of integration in compact assemblies.

KEY FEATURES

Features	Advantages
Absorptive Design	Absorptive switch design enables excellent return loss on all ports, minimizing reflection at the unselected port.
High Isolation: • 61 dB Typ. RFC to RF1/RF2 • 65 dB Typ. RF1 to RF2	High isolation significantly reduces leakage of power into OFF ports.
High Linearity and Input Power: • Input Power at P1dB, +25.2 dBm Typ. • Input IP3, +48 dBm Typ. • Max RF Input Power, +27 dBm CW	High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multi- carrier environments, or in the presence of strong interfering signal from adjacent circuitry. High RF input power tolerance protects the device from damage due to unexpected spikes in signal level.
Fast RF Switching Time: • Rise/Fall Time, Typ. 6.9 ns/7.1 ns • On/Off Time, Typ. 23.3 ns/16.5 ns • Settling to 0.05 dB, Typ. 29 ns	Fast switching makes this model suitable for applications where extremely fast transition between ports is re- quired, such as automated switching networks.
Compact Size, 3x3 mm	Small footprint saves space in dense layouts, while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB. Industry standard packaging allows for ease of assembly in high volume manufacturing processes.

SPDT RF Switch

Mini-Circuits

50 Ω

DC to 30 GHz Absorptive RF Switch with Internal Driver

M3SWA2-34DR+

ELECTRICAL SPECIFICATIONS^{1,2,3} AT +25° C, V_{DD}= +3.3 V, V_{EE}= -3.3 V, UNLESS NOTED OTHERWISE

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		DC		30	GHz
	0.01		0.6		
	0.1		0.6		
and the large	1.0		0.6		10
nsertion Loss	10		1.0		dB
	20		1.3		
	30		2.2		
	0.01	68	79		
	0.1	74	78		
	1.0	63	67		
solation Between Ports, RF1 & RF2	10	59	65		dB
	20	49	53		
	30	44	48		
	0.01	71	83		
	0.1	73	77		
	1.0	61	65		
solation Between RFC & RF1/RF2 Ports	10	46	50		dB
	20	41	48		
	30	41	45		
	0.01	15	19		
	0.1	20	24		
	1.0	17	21		
Return Loss - RFC	10	13	17		dB
	20	12	17		
	30	13	20		
	0.01	15	19		
	0.1	16	22		
	1.0	17	22		
Return Loss - RF1 & RF2 (On & Off State)	10	14	21		dB
	20	11	17		
	30	7	14		
	0.01	1	+46		
	0.1		+40		
	1.0		+50		
nput IP3 P _{IN} = +5 dBm/Tone)	10		+52		dBm
	20 30		+46 +42		
	0.01		+19.8		
	0.1		+24.5		
nput Power at P1dB	1.0		+26.1		dBm
	10		+27.4		
	20		+27.8		
	30		+25.7		
	0.01		+17.7		
	0.1		+21.6		
nput Power at P0.1dB	1.0		+23.4		dBm
	10		+26.3		
	20		+26.9		
	30		+24.4		

1. Tested on Mini-Circuits Characterization Test Board TB-M3SWA234DRC+. See Figure 2.

2. Bi-directional, refer to S-Parameters for actual performance. 3. All RF-ports must be DC blocked or held at 0 V DC.

Mini-Circuits

SPDT RF Switch

Mini-Circuits

 50Ω DC to 30 GHz Absorptive RF Switch with Internal Driver

M3SWA2-34DR+

DC ELECTRICAL SPECIFICATIONS

Parameter	Min.	Тур.	Max.	Units
Positive Supply Voltage, V _{DD}	+3.3		+3.6	V
Negative Supply Voltage, V_{EE}	-3.6		-3.3	V
Positive Supply Current, I _{DD}		2.7	2.9	mA
Negative Supply Current, I _{EE}		1.6	1.8	mA
Control Voltage Low		0	+0.8	V
Control Voltage High	+1.8	+2	+3.6	V
Control Current Low		0.01	1	μA
Control Current High		5	9	μA

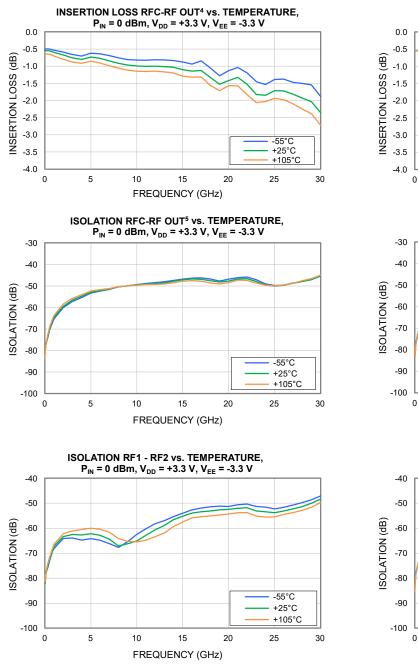
SWITCHING SPECIFICATIONS

Parameter	Condition	Min.	Тур.	Max.	Units
ON Time, 50% Control to 90% RF output			23		ns
OFF Time, 50% Control to 10% RF output	RF P _{IN} at RFC = 0 dBm		16		ns
Video Leakage	RF Frequency = 150 MHz Control Frequency = 1 kHz		+5.4		mV
Rise Time, 10% to 90% of RF output	Control High = +2 V		6.9		ns
Fall Time, 90% to 10% of RF output	Control Low = 0 V		7.1		ns
Settling time (50% VCTRL to 0.05 dB of final RF output)			29		ns

TRUTH TABLE

State of Control Voltage	RFC to RF1	RFC to RF2
Low	ON	OFF
High	OFF	ON

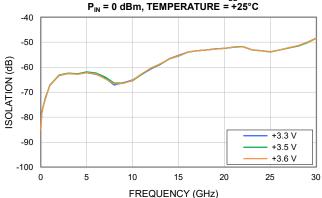
MMIC SURFACE MOUNT ⁻ RF Switch


Mini-Circuits

50 Ω

DC to 30 GHz

Absorptive RF Switch with Internal Driver


TYPICAL PERFORMANCE GRAPHS

+3.3 V +3.5 V +3.6 V 0 5 10 15 20 25 30 FREQUENCY (GHz) ISOLATION RFC-RF OUT⁵ vs. V_{DD}^{6} , P_{IN} = 0 dBm, TEMPERATURE = +25°C +3.3 V +3.5 V +3.6 V 5 0 10 15 20 25 30 FREQUENCY (GHz) ISOLATION RF1 - RF2 vs. V_{DD}⁶,

INSERTION LOSS RFC-RF OUT⁴ vs. V_{DD}^{6} , P_{IN} = 0 dBm, TEMPERATURE = +25°C

M3SWA2-34DR+

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)

5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)

6. V_{FF} is the negative equivalent value to V_{DD}

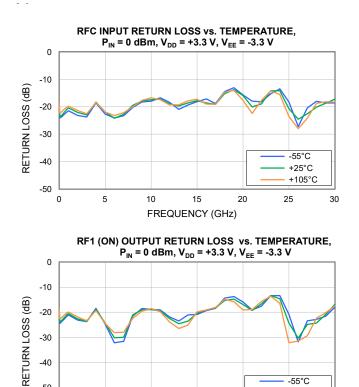
T RF Switch

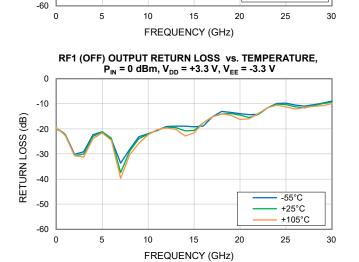
-55°C

+25°C

+105°C

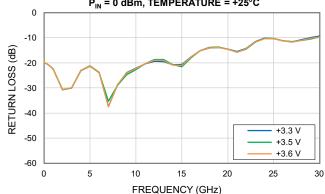
Mini-Circuits


-40


-50

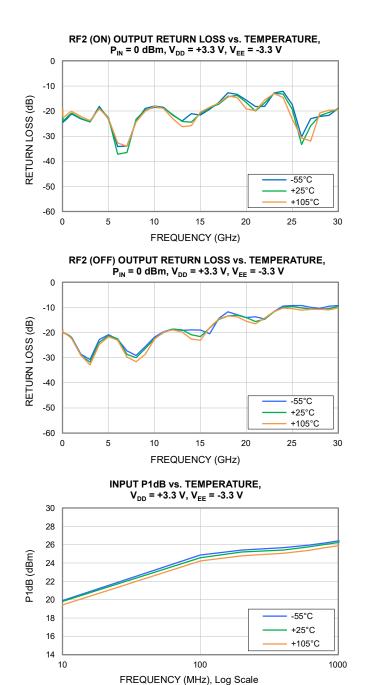
DC to 30 GHz **50** Ω

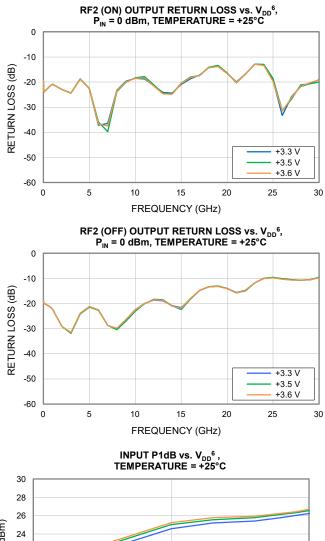
Absorptive RF Switch with Internal Driver


TYPICAL PERFORMANCE GRAPHS

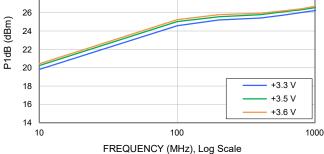
M3SWA2-34DR+

4. RF OUT is defined as either RF1 (ON) or RF2 (ON) 5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF) 6. V_{EE} is the negative equivalent value to V_{DD}


SPDT RF Switch


Mini-Circuits

50 Ω DC to 30 GHz


Hz Absorptive RF Switch with Internal Driver

TYPICAL PERFORMANCE GRAPHS

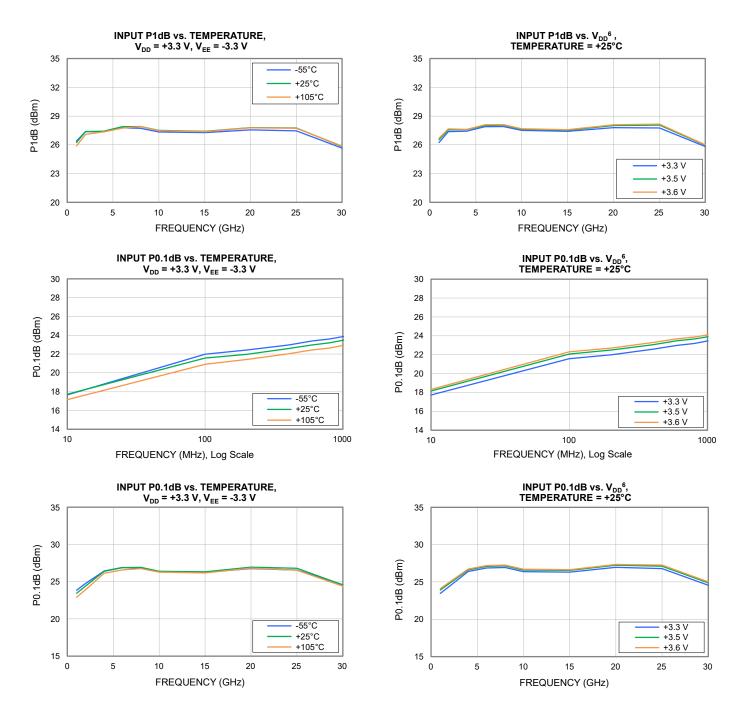
M3SWA2-34DR+

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)

5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)

6. V_{EE} is the negative equivalent value to V_{DD}

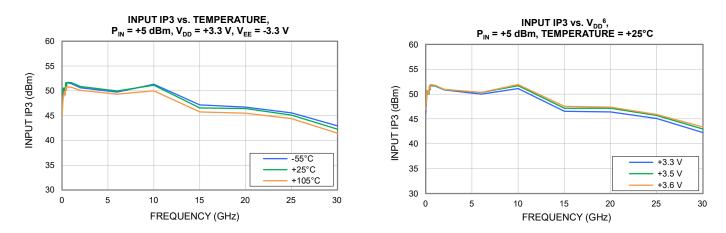
SPDT RF Switch


Mini-Circuits

50 Ω DC to 30 GHz

Hz Absorptive RF Switch with Internal Driver

M3SWA2-34DR+


TYPICAL PERFORMANCE GRAPHS

4. RF OUT is defined as either RF1 (ON) or RF2 (ON) 5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF) 6. V_{EE} is the negative equivalent value to V_{DD}

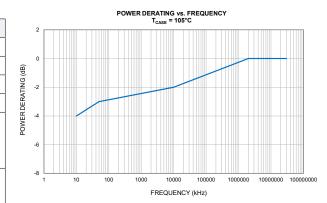
TYPICAL PERFORMANCE GRAPHS

4. RF OUT is defined as either RF1 (ON) or RF2 (ON)

5. RF OUT is defined as either RF1 (OFF) or RF2 (OFF)

6. V_{EE} is the negative equivalent value to V_{DD}

SPDT RF Switch


Mini-Circuits

50 Ω

DC to 30 GHz Absorptive RF Switch with Internal Driver

ABSOLUTE MAXIMUM RATINGS⁷

Parameter	Ratings	
Operating Temperature (ground lead)	-55°C to +105°C	
Storage Temperature	-65°C to +150°C	
Junction Temperature ⁸	+150°C	
Total Power Dissipation	0.43 W	
Through Path @ +105°C ^{9,10}		
Input Power at RFC (CW),	+29 dBm	
(V _{DD} = +3.5 V, V _{EE} = -3.5 V)		
Input Power at RF1/RF2 (CW), RF Applied to Selected Power	+29 dBm	
(V _{DD} = +3.5 V, V _{EE} = -3.5 V)		
Input Power at RF1/RF2 (CW), RF Applied to Unselected Power	+29 dBm	
(V _{DD} = +3.5 V, V _{EE} = -3.5 V)	+29 dBill	
Hot Switching @ +105°C ⁹	+24 dBm @ < 2 GHz	
Input Power at RFC (CW), $(V_{DD} = +3.5 \text{ V}, V_{EE} = -3.5 \text{ V})$	+27 dBm @ 2-30 GHz	
DC Voltage (V _{DD})	0 V to +5 V	
DC Voltage (V _{EE})	-5 V to 0 V	

M3SWA2-34DR+

7. Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for

continuous normal operation.

8. Peak temperature on top of Die.

9. Validated at +105°C.

10. See derating curve at right for power derating over frequency.

THERMAL RESISTANCE

Parameter	Ratings
Thermal Resistance $(\Theta_{jc})^{11}$	363°C/W

11. O_{ic}= (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING

AS

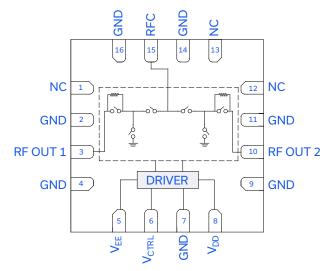
	Class	Voltage Range	Reference Standard
HBM	1A	250 V to < 500 V	ANSI/ESDA/JEDEC JS-001-2017
CDM	C3	≥ 1000 V	JESD22-C101F
ESD HANDLING PRECAUTION: This device is designed to be Class 1A for HBM. Static charge may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precaution			

should be used at all times to protect the device from ESD damage.

MSL RATING Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020E/JEDEC J-STD-033C

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com PAGE 9 OF 12

Mini-Circuits


SPDT RF Switch

Mini-Circuits

50 Ω DC to 30 GHz Absorptive RF Switch with Internal Driver

PAD DESCRIPTION

FUNCTIONAL DIAGRAM

Function	Pad Number	Application Description (Refer to Fig 2)
RFC	15	RFC Pad connects to RF Input port.
RF OUT 1	3	RF OUT 1 Pad connects to RF Output port 1.
RF OUT 2	10	RF OUT 2 Pad connects to RF Output port 2.
V _{DD}	8	$V_{\mbox{\scriptsize DD}}$ Pad connects to positive DC Input.
V _{EE}	5	V_{EE} Pad connects to negative DC Input.
V _{CTRL}	6	$V_{\mbox{\scriptsize CTRL}}$ Pad connects to switch control voltage input.
GND	2, 4, 7, 9, 11, 14, 16 & Paddle	Connects to ground.
NC	1, 12, 13	Not used internally. Connected to ground on test board.

M3SWA2-34DR+

Figure 1. M3SWA2-34DR+ Functional Diagram

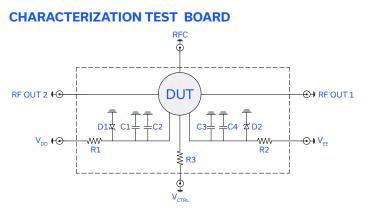


Figure 2. M3SWA2-34DR+ Characterization and Application Circuit

Electrical Parameters and Conditions

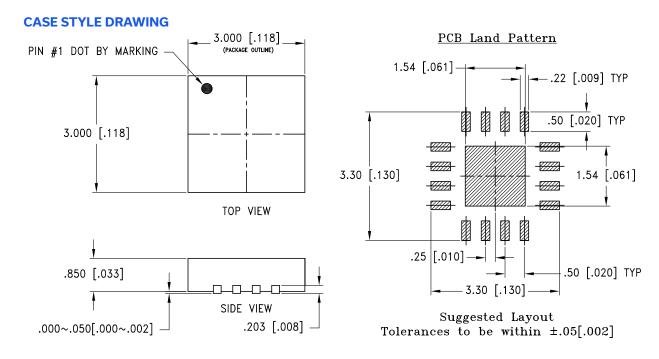
Insertion Loss, Isolation, Return Loss, Input Power at 1dB Compression (P1dB), and Input IP3 tested using PNA-X N5247B microwave network analyzer and P5022A vector network analyzer.

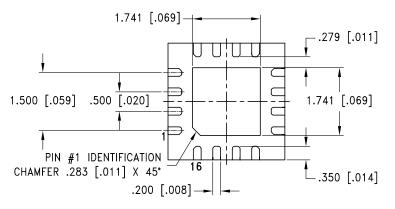
Conditions:

1. Insertion Loss, Isolation, and Return Loss: $P_{IN} = 0 \text{ dBm}$

2. Input IP3 (IIP3): Two tones, spaced 1 MHz apart, +5 dBm/Tone at input.

Component	Value	Size	Part Number	Manufacturer
C2, C3	100 pF	0402	GRM1555C1H101JA01D	Murata
C1, C4	0.1 uF	0402	GRM155R71C104KA88D	Murata
R1, R2	11.5 Ω	0402	RP73PF1E11R5BTDF	TE Connectivity
R3	100 Ω	0402	RK73H1ETTP1000F	КОА
D1, D2	V _z = +5.6 V	SOD-123	SZMMSZ5232BT1G	ON Semiconductor




SPDT RF Switch

Mini-Circuits

50 Ω DC to 30 GHz Absorptive RF Switch with Internal Driver

M3SWA2-34DR+



Weight: .02 grams

Dimensions are in mm [Inches]. Tolerances: 3 Pl. ±.05 [.002]

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

SPDT RF Switch

M3SWA2-34DR+

 \square Mini-Circuits 50 Ω DC to 30 GHz Absorptive RF Switch with Internal Driver

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD CLICK HERE

	Data		
Performance Data & Graphs	Graphs		
	S-Parameter (S3P Files) Data Set (.zip file)		
Case Style	DQ3005. Plastic package, exposed paddle, Lead Finish: Matte-Tin		
RoHS Status	Compliant		
Tape & Reel Standard quantities available on reel	F104 7" reels with 20, 50, 100, 200, 500, 1000, or 2000 devices		
Suggested Layout for PCB Design	PL-768		
Evaluation Board	TB-M3SWA234DRC+		
	Gerber File		
Environmental Ratings	ENV08T1		

NOTES

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

