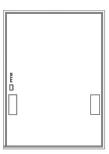
Ultra High Dynamic Range


Monolithic Amplifier Die

PHA-102-D+

 50Ω 50 MHz to 6 GHz

The Big Deal

- Ultra Wideband, 0.05 6 GHz
- Excellent Gain Flatness 14.3±0.3 from 0.05-3 GHz
- High Linearity, +26.4 dBm P1dB & +50 dBm OIP3 at 0.9 GHz

Product Overview

The PHA-102-D+ (RoHS compliant) is an advanced wideband amplifier die fabricated using PHEMT technology and offers extremely high dynamic range over a broad frequency range and with excellent gain flatness. In addition, the PHA-102-D+ has good input and output return loss over a broad frequency range.

Key Features

Feature	Advantages		
Ultra Wideband: 50MHz to 6GHz	Broadband covering primary wireless communications bands		
Extremely High IP3 50 dBm typ. at 0.9 GHz 40.3 dBm typ. at 3 GHz	The PHA-102-D+ matches industry leading IP3 performance relative to device size and power consumption. The combination of the design and PHEMT Structure provides enhanced linearity over a broad frequency range as evidence in the IP3 being approximately 17 dB above the P1dB point. This feature makes this amplifier ideal for use in: •Driver amplifiers for complex waveform up converter paths •Drivers in linearized transmit systems •Secondary amplifiers in ultra-High Dynamic range receivers		
Excellent Gain Flatness, 50 MHz-3GHz	Typical ± 0.3 dBgain flatness across theentire frequency range minimizes the needfor external equalizer networks making it agreat fit for instrumentation and EW application.		
Unpackaged Die	Enables the user to integrate the amplifier directly into hybrids		

Ultra High Dynamic Range

Monolithic Amplifier Die

PHA-102-D+

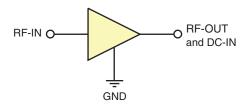
50Ω 50 MHz to 6 GHz

Product Features

- Ultra Wideband, 0.05 6 GHz
- Excellent Gain Flatness 14.3±0.3dB from 0.05-3 GHz
- High Linearity, +26.4 dBm P1dB & +50 dBm OIP3 at 0.9 GHz

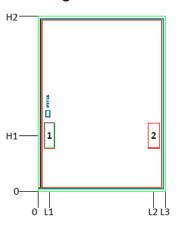
Typical Applications

- WiFi
- WLAN
- LTE
- WiMAX
- S-band Radar



Ordering Information: Refer to Last Page

General Description


The PHA-102-D+ (RoHS compliant) is an advanced wideband amplifier die fabricated using PHEMT technology and offers extremely high dynamic range over a broad frequency range and with excellent gain flatness. In addition, the PHA-102-D+ has good input and output return loss over a broad frequency range.

Simplified Schematic and Pad description

Pad#	Description
1	RF-IN
2	RF-OUT & DC-IN
Bottom of Die	GND

Bonding Pad Position

Thickness	Die size	Pad Size 1	Pad size 2
100	800 x 1100	59 x 154	69 x 154

Electrical Specifications at 25°C, 50Ω, unless noted

Parameter	Condition V _{DD} =9V ¹			V _S =9V ²	Units	
	(MHz)	Min.	Тур.	Max.	Тур.	
Frequency range		50		6000	50-6000	MHz
Gain	50		14.6		14.2	dB
	900		14.5		14.2	
	2000		14.1		13.8	
	2500		14.0		13.7	
	3000		14.0		13.8	
	6000		11.9		10.9	
Gain flatness	50 - 3000		0.3		0.25	dB
Input return loss	50		14		12	dB
	900		14		13	
	2000		12		13	
	2500		12		14	
	3000		12		15	
	6000		4		4	
Output return loss	50		18		13	dB
	900		17		17	
	2000		15		15	
	2500		14		15	
	3000		14		15	
	6000		4		4	
Output power @1 dB compression	50		26.1		25.4	dBm
	900		26.4		26.0	
	2000		26.5		26.1	
	2500		26.1		25.6	
	3000		25.6		25.0	
	6000		20.4		19.8	
Output IP3	50		44.8		41.6	dBm
(Pout= 0dBm/Tone)	900		50.0		49.3	
	2000		43.0		42.5	
	2500		41.4		41.4	
	3000		40.3		40.4	
	6000		37.3		38.1	
Noise figure	50		3.6		3.6	dB
	900		3.4		3.6	
	2000		3.7		3.8	
	2500		3.7		3.7	
	3000		4.0		4.0	
	6000		6.7		7.0	
Device operating voltage		8.5	9	9.5	9	V
Device operating current			192	211	191	mA
Device current variation vs. temperature ³			57.69		57.69	μΑ/°C
Device current variation vs voltage ⁴			0.026		0.026	mA/mV
Thermal resistance, junction-to-ground			20.4		20.4	°C/W
Lead at 85°C stage temperature			20.4		20.4	C/VV

^{1.} Die is packaged in SOT-89 and soldered on Mini-Circuits Characterization Test Board. See Characterization Test Circuit (Figure 1A, 1B & 1C).
2. Die is packaged in SOT-89 and soldered on Application Evaluation Board TB-PHA-102+. See Application Test Circuit (Figure 2).
3. Device Current Variation vs. Temperature= (Current at 85°C - Current at -45°C)/130°C

Absolute Maximum Ratings⁵

Ratings	
-40°C to 85°C	
3.18W	
22 dBm (continuous) 25 dBm (5 minutes max)	
11V	

^{5.} Permanent damage may occur in any of these limits are exceeded.

^{4.} Device Current Variation vs. Voltage = (Current at 9.5V - Current at 8.5V) / ((9.5V-8.5V)*1000 mV/V)

Characterization Test Circuit for S-Parameter & Noise Figure Measurement

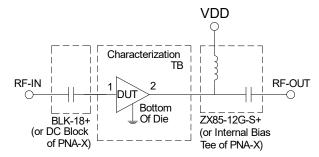


Fig 1A. Block Diagram of Test Circuit used for S-Parameter and Noise Figure Measurement. (DUT is packaged in SOT-89 and soldered on Mini-Circuits Characterization test board.) Gain, Return loss and noise figure are measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

1. Gain and Return loss: Pin= -25dBm

Characterization Test Circuit for P1dB Measurement

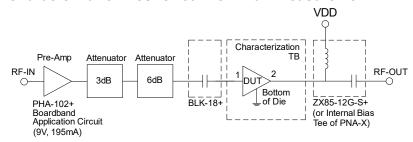


Fig 1B. Block Diagram of Test Circuit used for P1dB Measurement. (DUT is packaged in SOT-89 and soldered on Mini-Circuits Characterization test board.) Output power at1dB compression is measured using Agilent's N5242A PNA-X microwave network analyzer.

Characterization Test Circuit for IP3 Measurement

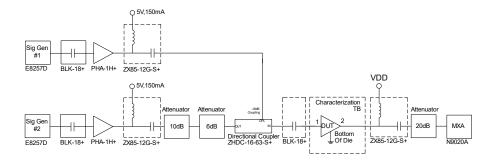
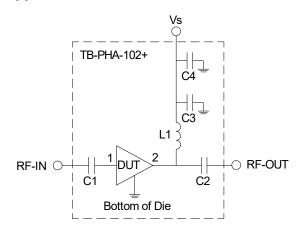
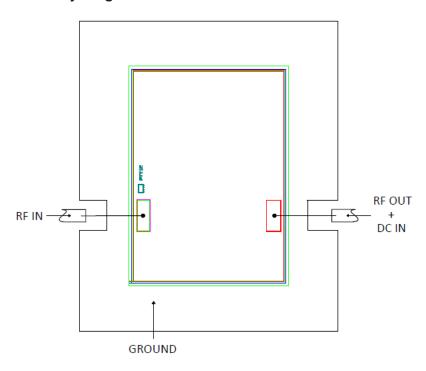



Fig 1C. Block Diagram of Test Circuit used for IP3 Measurement. (DUT is packaged in SOT-89 and soldered on Mini-Circuits Characterization test board) P1dB is measured using two E8257D Signal Generators and one N9020A MXA Signal Analyzer.

Condition:

1. Output IP3 (OIP3): Two Tones spaced 1 MHz apart, 8 dBm/ tone at output.

Application Circuit



Component	Size	Value	Part Number	Manufacturer
C1	0402	1000pF	GRM1555C1H102JA01D	Murata
C2	0402	1000pF	GRM1555C1H102JA01D	Murata
C3	0402	100pF	GRM1555C1H101JA01D	Murata
C4	0402	10000pF	GRM155R71H103KA88D	Murata
L1	0603	390nH	LQW18CNR39J00D	Murata

Fig 1C. Block Diagram of Test Circuit used for characterization. (DUT is packaged in SOT-89 and soldered on Mini-Circuits Application test board TB-PHA-102+)

Block Diagram of Test Circuit used for characterization. (DUT is packaged in SOT-89 and soldered on Mini-Circuits Application test board TB-PHA-102+)

Assembly Diagram

Assembly and Handling Procedure

- 1. Storage
 - Dice should be stored in a dry nitrogen purged desiccators or equivalent.
- 2. ESD

MMIC E-PHEMT amplifier dice are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be opened in clean room conditions at an appropriately grounded anti-static worksta tion. Devices need careful handling using correctly designed collets, vacuum pickup tips or sharp antistatic tweezers to deter ESD damage to dice.

- 3. Die Attach
 - The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are DieMat DM6030HK-PT/H579 or Ablestik 84-1LMISR4. Apply sufficient epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total die periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. It is recommended to use antistatic die pick up tools only.
- 4. Wire Bonding
 - Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the dice gold bond pads. Thermosonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1 mil diameter. Bonds must be made from the bond pads on the die to the package or substrate. All bond wires should be kept as short as low as reasonable to minimize performance degradation due to undesirable series inductance.

Additional Detailed Technical Info					
	Data Table	Data Table			
Performance Data	Swept Graphs	Swept Graphs			
	S-Parameter (S2P Files) Data Set with	S-Parameter (S2P Files) Data Set with and without port extension(.zip file)			
Case Style	Die	Die			
Die Ordering and packaging information	Quantity, Package	Model No.			
	Small, Gel - Pak: 5,10,50,100 KGD* Medium [†] , Partial wafer: KGD*<1845 Large [†] , Full Wafer	PHA-102-DG+ PHA-102-DP+ PHA-102-DF+			
momaton	†Available upon request contact sales representative				
	Refer to <u>AN-60-067</u>	Refer to <u>AN-60-067</u>			
Environmental Ratings	ENV80				

^{*}Known Good Dice ("KGD") means that the dice in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such dice fall within a predefined range. While DC testing is not definitive, it does help to provide a higher degree of confidence that dice are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

ESD Rating**

Human Body Model (HBM): Class 1A (pass 250V) in accordance with ANSI/ESD STM 5.1 - 2001

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an "As is" basis, with all faults.
- E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Dice (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bond ing and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Dice.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

^{**} Tested in industry standard SOT-89 package.