

Monolithic Amplifier Die PMA-183PLN-D+

Mini-Circuits

50Ω 6 to 18GHz

THE BIG DEAL

- Wideband, 6 to 18 GHz
- Excellent Noise Figure, 1.3 dB at 15 GHz
- Positive Gain Slope
- High Directivity, 33dB typ.

Generic photo used for illustration purposes only

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

SEE ORDERING INFORMATION ON THE LAST PAGE

APPLICATIONS

- Instrumentation
- Cellular Infrastructure
- Defense

PRODUCT OVERVIEW

PMA-183PLN-D+ is a PHEMT based wideband MMIC Amplifier die with an unique combination of high gain with positive gain slope, high directivity and low noise figure, making it ideal for receiver applications. This design operates on a single 2.6V voltage supply, and it is well matched for 50Ω .

KEY FEATURES

Feature	Advantages
High Directivity	With active directivity of 33 dB, PMA-183PLN-D+ is an excellent choice for buffering broadband circuits, eliminating the need for an expensive isolator in most cases.
Positive Gain Slope Vs. Frequency • +0.13 dB/GHz (6-15 GHz) • +0.73 dB/GHz (15-18 GHz)	Useful for compensating negative gain slope of most wideband microwave components and eliminating the need for equalization.
Excellent Noise Figure up to 18 GHz • 1.3 dB Typ. at 18 GHz	Enables lower system noise figure performance
Unpackaged Die	Enables user to integrate it directly into hybrids. Allows for high layout density of circuit boards, while minimizing effects of parasitics.

REV. OR ECO-009250 PMA-183PLN-D+ GY/CP/PS 210812

Mini-Circuits

WIDEBAND, LOW NOISE, POSITIVE GAIN SLOPE

Monolithic Amplifier Die PMA-183PLN-D+

Mini-Circuits

ELECTRICAL SPECIFICATIONS AT 25°C

Decemeter ¹	Condition (MHz)	-) Vs=2.6V			Linita	
Parameter	Condition (IMI 12)	Min.	Тур.	Max.	Onits	
Frequency range		6		18	GHz	
	6000		26.3			
Coin	10000		26.3		dD	
Gain	15000		27.5		uв	
	18000		29.7			
	6000		10.2			
Input Datum Inco	10000		14.8		dD	
input Return loss	15000		12.7		uв	
	18000		9.1			
	6000		11.4			
Outrast Datum lana	10000		15.3			
Output Return loss	15000		16.9		dВ	
	18000		25.0			
Directivity	6000 - 18000		33		dB	
	6000		9.8			
Output Dower at 1dD Compression	10000		8.6		dDm	
Output Power at 10B Compression	15000		9.6		UDITI	
	18000		10.2			
	6000		25.0			
Output ID2	10000		22.0		dDm	
	15000		22.4		abm	
	18000		21.9			
	6000		1.4			
Noise Figure	10000		1.3			
	15000		1.2		uв	
	18000		1.3			
Device Operating Voltage (V _s)		2.3	2.6	2.9	V	
Device Operating Current (I _s)			57.2	72	mA	
Device Current Variation vs. Temperature ²			7.69		µA/°C	
Device Current Variation vs. Voltage ³			0.04		mA/mV	
Thermal Resistance, junction-to-ground lead			49.5		°C/W	

Die is packaged in 3.5x2.5mm 16L MCLP and soldered on Mini-Circuits Characterization Test Board TB-PMA-183PLN+. See Characterization Test & Application Circuit (Fig. 1)
Device Current Variation vs. Temperature= (Current in mA at 85°C - Current in mA at -45°C)/130°C
J. Device Current Variation vs. Voltage = (Current in mA at 2.9V - Current in mA at 2.3V)/(2.9V-2.3V)*1000 mA/mV)

MAXIMUM RATINGS

Parameter	Ratings
Operating temperature (ground lead)	-40°C to 85°C
Junction Temperature	131°C
Total power dissipation	0.9W
1	+24 dBm (5 minute Max)
Input power (CVV)	+13 dBm (Continuous)
DC voltage at Vs	4V
DC voltage at RF-Ports(RF-IN &RF-OUT)	4V

Permanent damage may occur if any of these limits are exceeded.

Mini-Circuits

WIDEBAND, LOW NOISE, POSITIVE GAIN SLOPE

Monolithic Amplifier Die PMA-183PLN-D+

Mini-Circuits

PAD DESCRIPTION Pad Number Function **Description (See Figure 1)** RF-IN 1 **RF Input Pad RF-OUT** 4 **RF** Output Pad VDD 6 Supply Voltage Pad, Connects to Vs via R1 VE 7 Enable Voltage Pad, Connects to VDD via R2 2, 3, 5, 8 & GROUND Connects to Ground Bottom of Die

BONDING PAD POSITION

L1	L2	2	L3	H1		H2		H3	H	14	H5
75.0	1867	7.0	1942.0	301.0)	451.0	6	01.0	88	7.0	965.0
Thickn	ess		Die size	Pa	Pad size 1 & 4		Pad size 2, 3, 5 & 8		Pa (nd size 5 & 7	
100)	19	942 x 96	5 69	69 x 139		63 x 54		6	9 x 69	

CHARACTERIZATION, APPLICATION CIRCUIT

ASSEMBLY DRAWING

Fig 1. Characterization, Application Circuit & Assembly Drawing

Note: This block diagram is used for characterization. (DUT was packaged in 3.5x2.5mm, 16L MCLP and soldered on Mini-Circuits Characterization Test Board TB-PMA-183PLN+). Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Condition: 1. Gain and Return Loss: Pin = -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -10 dBm/tone at output.

Component	Size	Value	Part Number	Manufacturer
C1, C4	0805	0.33uF	TAJR334K035RNJ	AVX
C2, C5	0603	1000pF	GCM1885C1H102JA16D	Murata
C3, C6	0402	100pF	GRM1555C1H101JA01D	Murata
R1	0603	100hm	ESR03EZPF10R0	Rohm Semiconductor
R2	0402	180 Ohm	RK73H1ETTP1800F	Koa Speer

ASSEMBLY PROCEDURE

Storage 1.

Dice should be stored in a dry nitrogen purged desiccators or equivalent.

2. **FSD**

MMIC PHEMT amplifier dice are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic protected material, which should be open in clean room conditions at an appropriately grounded anti-static workstation.

Die Handling and Attachment

Devices need careful handling using correctly designed collets, it is recommended to handle the chip along the edges with a custom design collet. The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are Ablestik 84-1 LMISR4 or equivalents. Apply sufficent epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. It is recommended to use anti-static die pick up tools only.

Wire Bonding 4.

Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the dice gold bond pads. Thermo-sonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1mil diameter. Bonds must be made from the bond pads on the die to the packaged or substrate. All bond wires should be kept as short as low as reasonable to minimize performance degradation due to undesirable series inductance.

WIDEBAND, LOW NOISE, POSITIVE GAIN SLOPE

Monolithic Amplifier Die PMA-183PLN-D+

Mini-Circuits

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD.

	Data Table			
Performance Data	Swept Graphs			
	S-Parameter (S2P Files) Data Set with and without port extension(.zip file)			
Case Style	Die			
	Quantity, Package	Model No.		
Die Ordering and packaging information	Small, Gel - Pak: 5,10,50,100 KGD* Medium†, Partial wafer: KGD*<936	PMA-183PLN-DG+ PMA-183PLN-DP+ PMA-183PLN-DF+		
	+Available upon request contact sales representative Refer to AN-60-067			
Environmental Ratings	ENV80			

*Known Good Die ("KGD") means that the dice in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such dice fall within a predefined range. While DC testing is not definitive, it does provide a higher degree of confidence that die are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

ESD RATING**

Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with ANSI/ESD STM 5.1 - 2001

**Tested in industry standard MCLP 3.5 x 2.5 mm, 16 lead package

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained there in. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an As is basis, with all faults.
- E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of Known Good Dice (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on Known Good Dice.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

Mini-Circuits