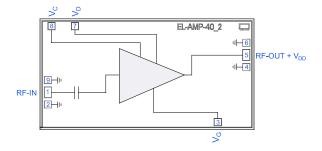


## Variable Gain Amplifier **PVGA-273-D+**

Mini-Circuits

0.3 to 26.5 GHz High Dynamic Range 50Ω


### THE BIG DEAL

Wide Bandwidth, 0.3 to 26.5 GHz

**MMIC DIE** 

- Output P1dB, Typ. +17.3 dBm
- High OIP3, Typ. +29 dBm
- Adjustable Gain Range, Typ. 30 dB
- Supply Voltage, +5 V or +8 V





SEE ORDERING INFORMATION ON THE LAST PAGE

### **APPLICATIONS**

- Test and Measurement Equipment
- Radar, EW, and ECM Defense Systems
- 5G MIMO and Back Haul Radio Systems
- Signal Distribution Networks

### **PRODUCT OVERVIEW**

Mini-Circuits' PVGA-273-D+ is a low noise variable gain MMIC amplifier fabricated in GaAs pHEMT technology. Operating from 0.3 to 26.5 GHz, this amplifier features a high dynamic range with 2.1 dB noise figure, 15.7 dB gain, +17.3 dBm P1dB, and +29 dBm OIP3. This design has the flexibility to operate from a +8 V drain voltage applied directly to the device or a +5 V drain voltage applied via a bias tee through the output port. An additional, optional supply voltage may be applied to enable a gain control range of 30 dB.

#### **KEY FEATURES**

| Features                                                                                          | Advantages                                                                                                                             |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Wide Bandwith, 0.3 to 26.5 GHz<br>• 17.5 dB Typ. Gain at 1 GHz<br>• 14.1 dB Typ. Gain at 26.5 GHz | Suitable for wide bandwidth defense and test and measurement applications, as well as narrowband perfor-<br>mance-driven applications. |
| High P1dB & OIP3<br>• +17.3 dBm Typ. P1dB<br>• +29 dBm Typ. OIP3                                  | Suitable as a driver amplifier in receiver/transmitter chains due to high linearity with low dissipated power.                         |
| Adjustable Gain Range<br>• 30 dB                                                                  | Enables temperature compensation and power control for transmit and receive signal chains.                                             |
| Unpackaged Die                                                                                    | Enables integration into hybrid chip and wire assemblies.                                                                              |

REV. OR ECO-021313 PVGA-273-D+ MCL NY 240326



### Variable Gain Amplifier **PVGA-273-D+**

Mini-Circuits

50Ω 0.3 to 26.5 GHz High Dynamic Range

### ELECTRICAL SPECIFICATIONS<sup>1</sup> AT +25°C, V<sub>c</sub> = OPEN, UNLESS NOTED OTHERWISE

| Parameter                                                       | Frequency  | $V_{DD} = +5$ | V (Applied at | RF-OUT) | V <sub>D</sub> = +8 | V (Applied a | t Pin 2) <sup>2</sup> | Units |
|-----------------------------------------------------------------|------------|---------------|---------------|---------|---------------------|--------------|-----------------------|-------|
| Parameter                                                       | (GHz)      | Min.          | Тур.          | Max     | Min.                | Тур.         | Max                   |       |
| Frequency Range                                                 |            | 0.3           |               | 26.5    | 0.3                 |              | 26.5                  | GHz   |
|                                                                 | 0.3        |               | 17.9          |         |                     | 16.7         |                       |       |
|                                                                 | 1.0        |               | 17.5          |         |                     | 16.7         |                       |       |
| Gain                                                            | 6.0        |               | 15.6          |         |                     | 14.8         |                       | dB    |
| Gam                                                             | 12.0       |               | 15.7          |         |                     | 14.1         |                       | ив    |
|                                                                 | 18.0       |               | 15.3          |         |                     | 14.3         |                       |       |
|                                                                 | 26.5       |               | 14.1          |         |                     | 13.3         |                       |       |
|                                                                 | 0.3        |               | +17.5         |         |                     | +14.9        |                       |       |
|                                                                 | 1.0        |               | +17.8         |         |                     | +15.4        |                       |       |
| Output Dower at 1 dD Compression (D1dD)                         | 6.0        |               | +17.9         |         |                     | +15.7        |                       | dDm   |
| Output Power at 1 dB Compression (P1dB)                         | 12.0       |               | +17.3         |         |                     | +14.2        |                       | dBm   |
|                                                                 | 18.0       |               | +16.1         |         |                     | +13.7        |                       |       |
|                                                                 | 26.5       |               | +15.1         |         |                     | +12.1        |                       |       |
|                                                                 | 0.3        |               | +21.0         |         |                     | +17.9        |                       |       |
|                                                                 | 1.0        |               | +20.9         |         |                     | +18.2        |                       |       |
|                                                                 | 6.0        |               | +21.0         |         |                     | +18.4        |                       |       |
| Output Power at Saturation (P <sub>SAT</sub> ) <sup>3</sup>     | 12.0       |               | +21.0         |         |                     | +17.3        |                       | dBn   |
|                                                                 | 18.0       |               | +19.5         |         |                     | +16.7        |                       |       |
|                                                                 | 26.5       |               | +18.9         |         |                     | +16.8        |                       |       |
| Output Third-Order Intercept<br>(P <sub>our</sub> = 0 dBm/Tone) | 0.3        |               | +28.4         |         |                     | +26.5        |                       | dBm   |
|                                                                 | 1.0        |               | +28.9         |         |                     | +27.2        |                       |       |
|                                                                 | 6.0        |               | +28.8         |         |                     | +27.7        |                       |       |
|                                                                 | 12.0       |               | +28.8         |         |                     | +26.6        |                       |       |
|                                                                 | 18.0       |               | +27.7         |         |                     | +26.2        |                       |       |
|                                                                 | 26.5       |               | +23.5         |         |                     | +23.1        |                       |       |
|                                                                 | 0.3        |               | 5             |         |                     | 7            |                       |       |
|                                                                 | 1.0        |               | 8             |         |                     | 11           |                       |       |
|                                                                 | 6.0        |               | 13            |         |                     | 13           |                       |       |
| Input Return Loss                                               | 12.0       |               | 16            |         |                     | 10           |                       | dB    |
|                                                                 | 12.0       |               | 24            |         |                     | 20           |                       |       |
|                                                                 | 26.5       |               |               |         |                     | 17           |                       |       |
|                                                                 | 0.3        |               | 10<br>14      |         |                     | 17           |                       |       |
|                                                                 |            |               |               |         |                     |              |                       |       |
|                                                                 | 1.0        |               | 13            |         |                     | 24           |                       |       |
| Output Return Loss                                              | 6.0        |               | 13            |         |                     | 12           |                       | dB    |
|                                                                 | 12.0       |               | 15            |         |                     | 11           |                       |       |
|                                                                 | 18.0       |               | 13            |         |                     | 17           |                       |       |
| 1 1 2                                                           | 26.5       |               | 13            |         |                     | 14           |                       |       |
| Isolation                                                       | 0.3 - 26.5 |               | 36            |         |                     | 39           |                       | dB    |
|                                                                 | 0.3        |               | 4.4           |         |                     | 3.9          |                       |       |
|                                                                 | 1.0        |               | 2.7           |         |                     | 2.5          |                       |       |
| Noise Figure                                                    | 6.0        |               | 2.0           |         |                     | 2.0          |                       | dB    |
| -                                                               | 12.0       |               | 2.1           |         |                     | 2.3          |                       |       |
|                                                                 | 18.0       |               | 2.6           |         |                     | 2.8          |                       |       |
|                                                                 | 26.5       |               | 4.0           |         |                     | 4.2          |                       |       |
| Device Operating ( $V_{DD}$ or $V_{D}$ )                        |            |               | +5            |         |                     | +8           |                       | V     |
| Device Operating Current $(I_{DD} \text{ or } I_D)^4$           |            |               | 80            |         |                     | 80           |                       | mA    |
| Gate Voltage (V <sub>G</sub> )                                  |            | -0.46         | -0.38         | -0.31   | -0.45               | -0.37        | -0.29                 | V     |
| Gate Current (I <sub>G</sub> )                                  |            |               | 0.02          |         |                     | 0.02         |                       | mA    |
| Control Voltage (V <sub>c</sub> )                               |            | -1            | Open          | +2      | -1                  | Open         | +2                    | V     |

1. Tested on Mini-Circuits Die Characterization Test Board. See Figure 3.

2. Electrical specifications were measured on packaged model PVGA-273+ on its Mini-Circuits Characterization Test Board TB-PVGA-273C+.

3.  $\mathsf{P}_{\mathsf{SAT}}$  is defined as when the Output Power changes 0.1 dB per 1 dB change in Input Power.

4. Current at P<sub>IN</sub> = -25 dBm. Increases to 93 mA typical at P1dB (V<sub>DD</sub> = +5 V) and 86 mA typical at P1dB (V<sub>D</sub> = +8 V).

### Mini-Circuits



## Variable Gain Amplifier PVGA-273-D+

Mini-Circuits

50Ω

0.3 to 26.5 GHz High Dynamic Range

### ELECTRICAL SPECIFICATIONS<sup>5</sup> OVER VARIOUS V<sub>c</sub> AT +25°C, V<sub>DD</sub> = +5 V, UNLESS NOTED OTHERWISE

|                                                             | Frequency  |        | Control Voltage, $V_c$ |       | 11.1.  |
|-------------------------------------------------------------|------------|--------|------------------------|-------|--------|
| Parameter (Typ.)                                            | (ĠHz)      | -0.7 V | +1 V                   | +2 V  | Units  |
| DC Current                                                  |            | 23     | 51                     | 82    | mA     |
|                                                             | 0.3        | 11.2   | 16.0                   | 16.8  |        |
|                                                             | 1.0        | 10.8   | 15.9                   | 16.7  |        |
| Gain                                                        | 6.0        | 6.6    | 13.5                   | 14.5  | dB     |
| Gain                                                        | 12.0       | 5.4    | 12.8                   | 13.8  | UB     |
|                                                             | 18.0       | 5.0    | 12.9                   | 14.0  |        |
|                                                             | 26.5       | 2.5    | 11.9                   | 13.1  |        |
|                                                             | 0.3        | -2.2   | +14.4                  | +15.5 |        |
|                                                             | 1.0        | -2.7   | +14.4                  | +15.8 |        |
| Dutput Power at 1 dB Compression (P1dB)                     | 6.0        | -4.2   | +14.3                  | +16.0 | dBm    |
|                                                             | 12.0       | -3.9   | +13.5                  | +14.9 | UBIII  |
|                                                             | 18.0       | -3.7   | +12.5                  | +14.1 |        |
|                                                             | 26.5       | -3.7   | +11.0                  | +12.6 |        |
|                                                             | 0.3        | +0.8   | +17.3                  | +18.9 |        |
|                                                             | 1.0        | +0.2   | +17.7                  | +19.4 |        |
| Dutput Power at Saturation (P <sub>SAT</sub> ) <sup>6</sup> | 6.0        | -0.3   | +17.6                  | +19.4 | dBm    |
| Jutput Power at Saturation (P <sub>SAT</sub> ) <sup>-</sup> | 12.0       | +2.1   | +16.9                  | +18.4 | dBm    |
|                                                             | 18.0       | +5.5   | +16.1                  | +17.7 |        |
|                                                             | 26.5       | +1.3   | +17.7                  | +19.1 |        |
|                                                             | 0.3        | +5.9   | +24.9                  | +25.9 |        |
|                                                             | 1.0        | +5.7   | +24.7                  | +26.4 |        |
| Dutput Third-Order Intercept                                | 6.0        | +4.9   | +25.2                  | +27.4 | alDere |
| P <sub>out</sub> = -9 dBm/Tone)                             | 12.0       | +5.0   | +24.2                  | +26.2 | dBm    |
|                                                             | 18.0       | +4.9   | +23.1                  | +25.4 |        |
|                                                             | 26.5       | +5.0   | +20.2                  | +22.0 |        |
|                                                             | 0.3        | 4      | 6                      | 6     |        |
|                                                             | 1.0        | 6      | 11                     | 11    |        |
|                                                             | 6.0        | 8      | 12                     | 13    | 10     |
| nput Return Loss                                            | 12.0       | 7      | 9                      | 10    | dB     |
|                                                             | 18.0       | 17     | 21                     | 19    |        |
|                                                             | 26.5       | 18     | 18                     | 19    |        |
|                                                             | 0.3        | 13     | 12                     | 12    |        |
|                                                             | 1.0        | 24     | 26                     | 25    |        |
|                                                             | 6.0        | 12     | 12                     | 12    |        |
| Output Return Loss                                          | 12.0       | 11     | 11                     | 11    | dB     |
|                                                             | 18.0       | 18     | 18                     | 18    |        |
|                                                             | 26.5       | 15     | 15                     | 15    |        |
| solation                                                    | 0.3 - 26.5 | 33     | 38                     | 39    | dB     |
|                                                             | 0.3        | 5.8    | 4.1                    | 3.9   |        |
|                                                             | 1.0        | 3.3    | 2.5                    | 2.4   |        |
|                                                             | 6.0        | 4.1    | 2.3                    | 2.2   |        |
| Noise Figure                                                | 12.0       | 4.4    | 2.3                    | 2.2   | dB     |
|                                                             | 18.0       | 5.2    | 2.8                    | 2.7   |        |
|                                                             | 26.5       | 7.1    | 4.1                    | 4.1   |        |

5. Electrical specification over various V<sub>c</sub> was measured on model PVGA-273+ on its Mini-Circuits Characterization Test Board TB-PVGA-273C+.

6. P<sub>SAT</sub> is defined as when the Output Power changes 0.1 dB per 1 dB change in Input Power.

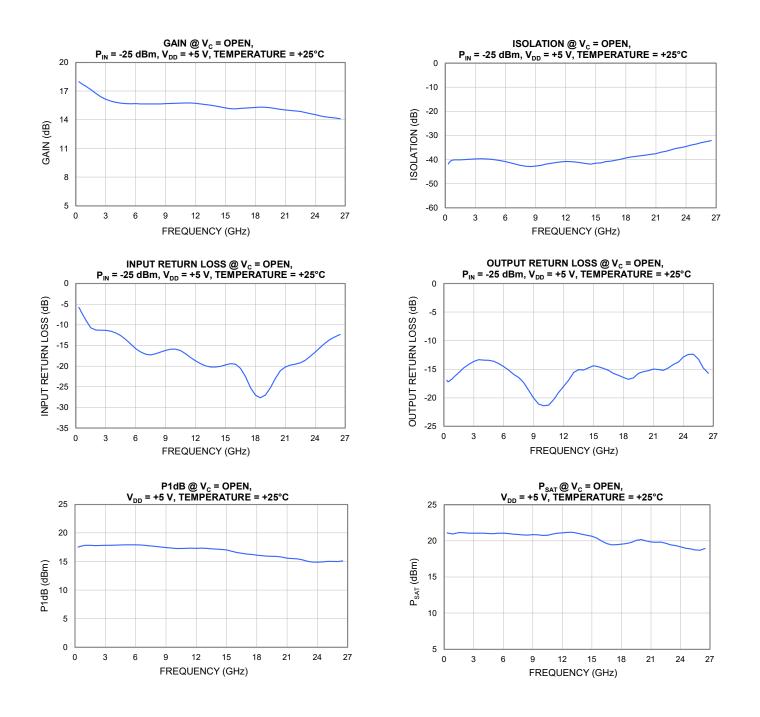


## Variable Gain Amplifier PVGA-273-D+

Mini-Circuits

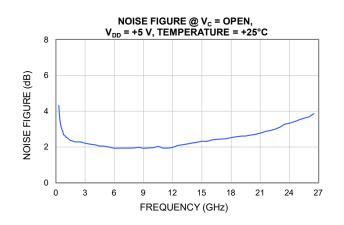
50Ω

0.3 to 26.5 GHz High Dynamic Range


### ELECTRICAL SPECIFICATIONS<sup>7</sup> OVER VARIOUS $V_c$ AT +25°C, $V_D$ = +8 V, UNLESS NOTED OTHERWISE

|                                                             | Frequency  | Control Voltage, V <sub>C</sub><br>-0.7 V +1 V +2 V |       |       | +2 V   |  |
|-------------------------------------------------------------|------------|-----------------------------------------------------|-------|-------|--------|--|
| Parameter (Typ.)                                            | (GHz)      |                                                     |       | +2 V  |        |  |
| DC Current                                                  |            | 37                                                  | 58    | 82    | mA     |  |
|                                                             | 0.3        | 15.2                                                | 16.2  | 16.7  |        |  |
|                                                             | 1.0        | 14.7                                                | 16.1  | 16.7  |        |  |
|                                                             | 6.0        | 11.9                                                | 14.0  | 14.8  |        |  |
| Gain                                                        | 12.0       | 11.0                                                | 13.3  | 14.1  | dB     |  |
|                                                             | 18.0       | 9.5                                                 | 13.4  | 14.2  |        |  |
|                                                             | 26.5       | 7.4                                                 | 12.3  | 13.2  |        |  |
|                                                             | 0.3        | +5.9                                                | +14.2 | +14.8 |        |  |
|                                                             | 1.0        | +4.8                                                | +14.0 | +15.3 |        |  |
| Dutput Power at 1 dB Compression (P1dB)                     | 6.0        | +4.0                                                | +14.2 | +15.7 | dBm    |  |
|                                                             | 12.0       | +3.4                                                | +13.4 | +14.1 | UDIII  |  |
|                                                             | 18.0       | +2.6                                                | +12.3 | +13.5 |        |  |
|                                                             | 26.5       | +1.0                                                | +11.2 | +11.8 |        |  |
|                                                             | 0.3        | +8.9                                                | +17.5 | +17.9 |        |  |
|                                                             | 1.0        | +8.4                                                | +17.8 | +18.3 |        |  |
|                                                             | 6.0        | +8.4                                                | +17.9 | +18.4 | alDara |  |
| Output Power at Saturation (P <sub>SAT</sub> ) <sup>8</sup> | 12.0       | +8.0                                                | +16.9 | +17.3 | dBm    |  |
|                                                             | 18.0       | +8.6                                                | +16.4 | +16.7 |        |  |
|                                                             | 26.5       | +7.1                                                | +16.8 | +16.5 |        |  |
|                                                             | 0.3        | +17.2                                               | +26.0 | +26.8 |        |  |
|                                                             | 1.0        | +16.7                                               | +25.5 | +27.3 |        |  |
| Dutput Third-Order Intercept                                | 6.0        | +15.4                                               | +25.5 | +28.0 |        |  |
| P <sub>out</sub> = -9 dBm/Tone)                             | 12.0       | +14.1                                               | +24.5 | +26.7 | dBm    |  |
|                                                             | 18.0       | +13.5                                               | +24.4 | +27.1 |        |  |
|                                                             | 26.5       | +11.4                                               | +21.3 | +23.2 |        |  |
|                                                             | 0.3        | 6                                                   | 6     | 7     |        |  |
|                                                             | 1.0        | 9                                                   | 11    | 11    |        |  |
|                                                             | 6.0        | 11                                                  | 12    | 13    | 15     |  |
| nput Return Loss                                            | 12.0       | 9                                                   | 9     | 10    | dB     |  |
|                                                             | 18.0       | 20                                                  | 21    | 20    |        |  |
|                                                             | 26.5       | 17                                                  | 17    | 17    |        |  |
|                                                             | 0.3        | 14                                                  | 12    | 11    |        |  |
|                                                             | 1.0        | 19                                                  | 26    | 24    |        |  |
|                                                             | 6.0        | 11                                                  | 12    | 12    |        |  |
| Output Return Loss                                          | 12.0       | 11                                                  | 11    | 11    | dB     |  |
|                                                             | 18.0       | 18                                                  | 18    | 17    |        |  |
|                                                             | 26.5       | 15                                                  | 14    | 14    |        |  |
| solation                                                    | 0.3 - 26.5 | 35                                                  | 38    | 39    | dB     |  |
|                                                             | 0.3        | 7.5                                                 | 4.7   | 3.9   |        |  |
|                                                             | 1.0        | 4.1                                                 | 2.8   | 2.5   |        |  |
|                                                             | 6.0        | 2.8                                                 | 2.1   | 2.1   | 15     |  |
| Noise Figure                                                | 12.0       | 3.3                                                 | 2.3   | 2.3   | dB     |  |
|                                                             | 18.0       | 3.9                                                 | 2.8   | 2.8   |        |  |
|                                                             | 26.5       | 5.7                                                 | 4.2   | 4.3   |        |  |

8. P<sub>SAT</sub> is defined as when the Output Power changes 0.1 dB per 1 dB change in Input Power.




### TYPICAL PERFORMANCE GRAPHS WITH $V_{DD}$ = +5 V AND $V_D$ = OPEN

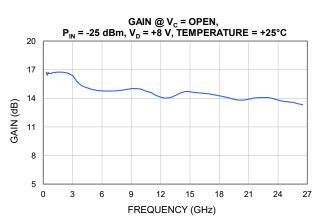


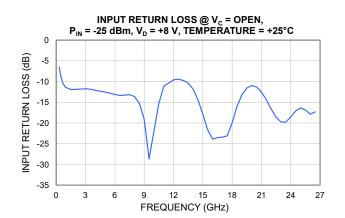


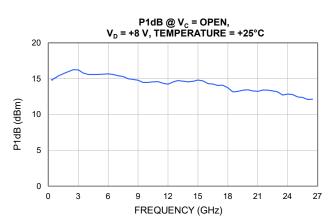
### TYPICAL PERFORMANCE GRAPHS WITH $V_{DD}$ = +5 V AND $V_D$ = OPEN

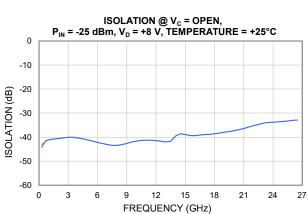


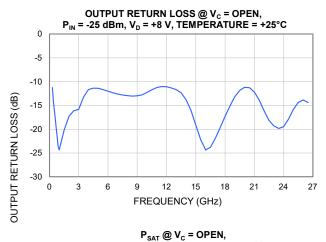
### TYPICAL PERFORMANCE GRAPHS WITH $V_{DD}$ = +5 V AND $V_D$ = OPEN

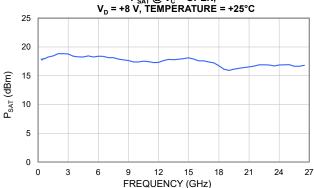

Note: All data in this section represents the Die attached in a 5x5 mm 32-Lead QFN style package and measured on Mini-Circuits Characterization Test Board TB-PVGA-273C+





### TYPICAL PERFORMANCE GRAPHS WITH $V_D = +8 V AND V_{DD} = OPEN$


Note: All data on this page represents the Die attached in a 5x5 mm 32-Lead QFN style package and measured on Mini-Circuits Characterization Test Board TB-PVGA-273C+

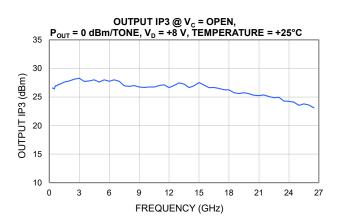


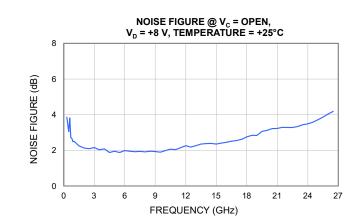









### **MMIC DIE** Variable Gain Amplifier **PVGA-273-D+**

50Ω 0.3 to 26.5 GHz High Dynamic Range

TYPICAL PERFORMANCE GRAPHS WITH  $V_D = +8 V \text{ AND } V_{DD} = \text{OPEN}$ Note: All data on this page represents the Die attached in a 5x5 mm 32-Lead QFN style package and measured on Mini-Circuits Characterization Test Board TB-PVGA-273C+







### Variable Gain Amplifier **PVGA-273-D+**

Mini-Circuits

0.3 to 26.5 GHz High Dynamic Range

### **ABSOLUTE MAXIMUM RATINGS<sup>9</sup>**

50Ω

| Parameter                                | Ratings         |
|------------------------------------------|-----------------|
| Operating Temperature <sup>10</sup>      | -45°C to +105°C |
| Storage Temperature <sup>11</sup>        | -65°C to +150°C |
| Junction Temperature <sup>12</sup>       | +150°C          |
| Total Power Dissipation, $V_{DD}$ = +5 V | 2.75 W          |
| Total Power Dissipation, $V_D = +8 V$    | 2.75 W          |
| Input Power (CW), V <sub>DD</sub> = +5 V | +24 dBm         |
| Input Power (CW), $V_D$ = +8 V           | +24 dBm         |
| DC Voltage on V <sub>DD</sub>            | +11 V           |
| DC Voltage on $V_D$                      | +11 V           |
| Current I <sub>DD</sub>                  | 250 mA          |
| Current I <sub>D</sub>                   | 250 mA          |
| DC Voltage on V <sub>G</sub>             | 0 V             |
| Current I <sub>G</sub>                   | 0.18 mA         |
| DC Voltage on V <sub>c</sub>             | +2 V            |

9. Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.

10. Bottom of Die.

11. For Die shipped in Gel-Pak see ENV80 (Limited by packaging).

12. Peak temperature on top of Die.

### THERMAL RESISTANCE

| Parameter                               | Ratings |
|-----------------------------------------|---------|
| Thermal Resistance $(\Theta_{JC})^{13}$ | 7.2°C/W |

13.  $\Theta_{IC}$ = (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

#### ESD RATING<sup>14</sup>

|     | Class           | Voltage Range  | Reference Standard          |
|-----|-----------------|----------------|-----------------------------|
| HBM | 1A              | 250 V to <500V | ANSI/ESDA/JEDEC JS-001-2017 |
| CDM | CDM C3 ≥ 1000 V |                | JESD22-C101F                |



ESD HANDLING PRECAUTION: This device is designed to be Class 1A for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage

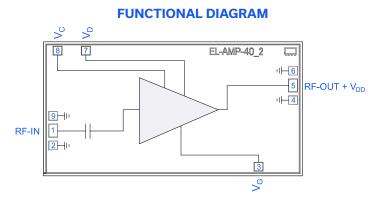
14. Tested in 5x5mm 32-Lead QFN-Style Package.

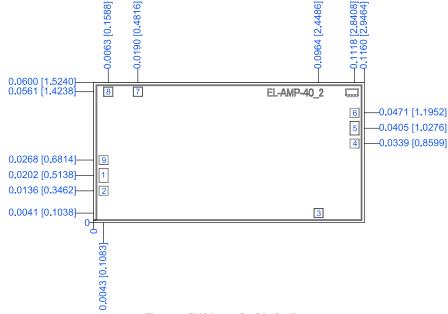


## Variable Gain Amplifier **PVGA-273-D+**

Mini-Circuits

0.3 to 26.5 GHz High Dynamic Range 50Ω





Figure 1. PVGA-273-D+ Functional Diagram

| Function                    | Pad<br>Number | Application Description (Refer to Figure 3)                                   |
|-----------------------------|---------------|-------------------------------------------------------------------------------|
| RF-IN                       | 1             | RF-IN Pad connects to the RF input port.                                      |
| RF-OUT<br>+ V <sub>DD</sub> | 5             | RF-OUT + $V_{DD}$ Pad connects to RF output and drain voltage input port.     |
| V <sub>G</sub>              | 3             | DC Input Pad connects to gate voltage input port.                             |
| V <sub>D</sub>              | 7             | DC Input Pad connects to drain voltage input port.                            |
| Vc                          | 8             | DC Input Pad connects to the control voltage input port.                      |
| GND                         | 2,4,6 & 9     | Connects to die backside through vias. bond wires to the ground are optional. |

PAD DESCRIPTION<sup>15</sup>

15. V<sub>D</sub> and V<sub>DD</sub> are separate independent voltage pins. PVGA-273-D+ can be operated by either applying +5 V (typ.) to Pad 5 RF-OUT + V<sub>DD</sub> or +8 V (typ.) to Pad 7 V<sub>D</sub>. Do not apply voltage to both Pad 5 and Pad 7 simultaneously. Applying voltage to both Pad 5 and Pad 7 simultaneously will damage the device.

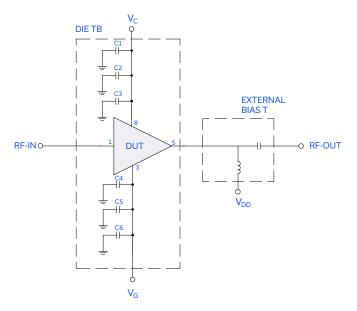




### **DIMENSIONS:** inches [mm], Typical

| Die Size                       | 0.0600 x 0.1160<br>[1.5240 x 2.9464] |
|--------------------------------|--------------------------------------|
| Die Thickness                  | 0.0039<br>[0.1000]                   |
| Bond Pad Sizes:                |                                      |
| Pad 1 & 5                      | 0.0059 x 0.0039<br>[0.1500 x 0.1000] |
| Pads 2-4, 6-9                  | 0.0039 x 0.0039<br>[0.1000 x 0.1000] |
| Plating (Pads & Bottom of Die) | Gold                                 |

Figure 2. PVGA-273-D+ Die Outline




## Variable Gain Amplifier **PVGA-273-D+**

Mini-Circuits

0.3 to 26.5 GHz High Dynamic Range 50Ω

### **CHARACTERIZATION BOARD**



#### **Electrical Parameters and Conditions**

Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3), and Noise Figure measured using N5247B PNA-X microwave network analyzer.

#### Conditions:

- 1. Gain and Return Loss:  $P_{IN} = -25 \text{ dBm}$ .
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart:
  - a. 0 dBm/Tone at Output when  $V_c$  = open. b. -9 dBm/Tone at Output when  $V_c$  is varied.

Caution: Permanent damage to the device will occur if the Power ON and Power OFF sequences are not followed.

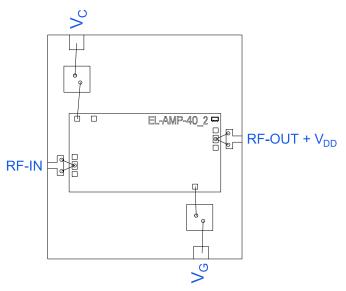
Power ON:

- 1) Set  $V_G = -2$  V. Apply  $V_G$ . 2) Set  $V_{DD} = +5$  V. Apply  $V_{DD}$ .
- 3) Increase  $V_{G}$  to obtain the desired  $I_{DD}$  as shown in the Electrical Specification Table.
- 4) Apply V<sub>c</sub> if required for variable gain control. Not required for typical operation. 5) Apply RF signal.

Power OFF:

- 1) Turn Off RF signal.
- 2) Turn Off V<sub>c</sub> if applied.
- 3) Adjust  $V_{G}$  down to -2 V. 4) Turn Off  $V_{DD}$ .
- 5) Turn Off V<sub>G</sub>.

Figure 3. PVGA-273-D+ Characterization and Application Circuit.


| Component | Value   | Size        | Part Number        | Manufacturer    |
|-----------|---------|-------------|--------------------|-----------------|
| C1, C6    | 0.01 uF | 0402        | KGM05AR71H103KH    | AVX Corporation |
| C2, C5    | 1 uF    | 0402        | GRM155R61H105KE05D | Murata          |
| C3, C4    | 100 pF  | 22 x 22 mil | MA4M3100           | МАСОМ           |



# Variable Gain Amplifier **PVGA-273-D+**

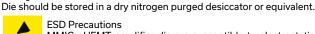
0.3 to 26.5 GHz High Dynamic Range 50Ω

### **ASSEMBLY DIAGRAM**



**MMIC DIE** 

Figure 4. PVGA-273-D+ Assembly Diagram.


Refer to the table in Figure 3 for more details on the passive components.

- Bond wire diameter: 1 mil
- Bond wire lengths from Die Pad to PCB at
- RF-IN & RF-OUT ports: 15 mils
- V<sub>G</sub> port: 30 mils
- V<sub>c</sub> port: 30 mils
- Typical Gap from Die edge to PCB edge: 2 mils
- PCB thickness and material: 8 mil Rogers RO4003C (Thickness: 1 oz copper on each side)

### **ASSEMBLY AND HANDLING PROCEDURE**

Storage 1.

2.



MMIC pHEMT amplifier die are susceptible to electrostatic and mechanical damage. Die are supplied in anti-static protected material, which should be opened only in clean room conditions at an appropriately grounded anti-static workstation.

Die Handling and Attachment 3

Devices require careful handling using tools appropriate for manipulating semiconductor chips. It is recommended to handle the chips along the edges with a custom designed collet. The surface of the chips have exposed air bridges and should not be touched with a vacuum collet, tweezers or fingers. The die mounting surface must be clean and flat. Using conductive silver-filled epoxy, apply sufficient adhesive to meet the required bond line thickness, fillet height and coverage around the total periphery of the device. The recommended epoxy is Ablestik 84-1 LMISR4 or equivalent. Parts should be cured in a nitrogen-filled atmosphere per manufacturer's recommended cure profile.

4. Wire Bonding

Openings in the surface passivation above the gold bond pads are provided to allow wire bonding to the die. Thermosonic bonding is recommended with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. The suggested interconnect is pure gold, 1 mil diameter wire. Bonds are recommended to be made from the bond pads on the die to the package or substrate. All bond wire length and bond wire height should be kept as short as possible, unless specified by design, to minimize performance degradation due to undesirable series inductance.

### **Mini-Circuits**



### Variable Gain Amplifier **PVGA-273-D+**

Mini-Circuits

0.3 to 26.5 GHz High Dynamic Range 50Ω

#### **CLICK HERE** ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD

|                                        | Data                                                                                        |              |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------|--------------|--|--|
| Performance Data & Graphs              | Graphs                                                                                      |              |  |  |
|                                        | S-Parameter (S2P Files) Data Set (.zip file)                                                |              |  |  |
| Case Style                             | Die                                                                                         |              |  |  |
| RoHS Status                            | Compliant                                                                                   |              |  |  |
|                                        | Quantity, Package                                                                           | Model No.    |  |  |
|                                        | Gel-Pak: 5, 10, or 50 KGD*                                                                  | PVGA-273-DG+ |  |  |
| Die Ordering and Packaging Information | Medium <sup>†</sup> , Partial wafer: KGD*<493                                               | PVGA-273-DP+ |  |  |
|                                        | Full wafer <sup>†</sup>                                                                     | PVGA-273-DF+ |  |  |
|                                        | <sup>†</sup> Available upon request contact sales representative. Refer to <u>AN-60-067</u> |              |  |  |
| Die Marking                            | EL-AMP-40_2                                                                                 |              |  |  |
| Environmental Ratings                  | ENV80                                                                                       |              |  |  |

Known Good Die ("KGD") means that the die in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such die fall within a predefined range. While DC testing is not definitive, it does provide a high degree of confidence that die are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained there in. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an As is basis, with all faults.

E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of known good die (KGD) (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on KGD.

F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any thirdparty trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products

