

Programmable Attenuator RC8DAT-8G-95PE

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

THE BIG DEAL

- · Eight independently programmable channels
- Over 100 dB Isolation between channels
- Repeatable 0-95 dB attenuation range
- SSH Secure Ethernet communication
- Power over Ethernet (PoE) per IEEE 802.3af

APPLICATIONS

- Wi-Fi 6E MIMO development
- LTE / 5G / IoT / Bluetooth / Zigbee
- Cellular handover testing
- C-band radar / satcom testing
- Automated signal sweeping / fading

Generic photo used for illustration purposes only

PRODUCT OVERVIEW

Mini-Circuits' RC8DAT-8G-95PE is an 8-channel programmable attenuator capable of supporting a wide range of signal level control applications from 1 MHz to 8 GHz. All 8 channels can be independently controlled with 0.25 dB attenuation resolution and more than 100 dB isolation between the channels. The dynamic range of each channel is 0 to 95 dB for applications up to 7.2 GHz and 0 to 90 dB up to 8 GHz. The unique attenuation design maintains linear attenuation change per dB, even at the highest attenuation settings.

All 4 bi-directional RF channels are housed in a single, compact and rugged package (3.00" x 5.17" x 1.16") with SMA female connectors on all RF ports. Ethernet (RJ45) with PoE and USB (type C) ports are both included to provide flexible control and DC supply options.

Full software support is provided, including our user-friendly GUI application for Windows and a full API with programming instructions for Windows and Linux environments (both 32-bit and 64-bit systems).

KEY FEATURES

Feature	Advantages
Programmable attenuation sequences	Configure timed sweep and hop sequences to run unaided without additional user interaction.
Wide attenuation range	Independently controllable 0-95 dB attenuators on each channel allow simulation of a wide range of test scenarios including receiver sensitivity, device / base-station handovers, device failures, and interference effects.
Safe attenuation transitions	Carefully synchronized attenuation transitions are implemented to prevent momentary reductions in attenuation whilst changing states, which would otherwise cause spikes in power level at the output.
Power over Ethernet (PoE)	Control and power the attenuator via a PoE network to simplify connections and allow remote attenuator operation over long Ethernet cable runs. Compliant with IEEE 802.3af mode A and mode B.
Secure Ethernet communication	Support for SSH (Secure Shell protocol) provides a means for secure communication over Ethernet networks with strict security policies. HTTP & Telnet communication via Ethernet are also supported.

Trademarks

All trademarks cited within this document are the property of their respective owners. Neither Mini-Circuits nor the Mini-Circuits products are affiliated with or endorsed or sponsored by the owners of the referenced trademarks. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

rogrammable Attenuator RC8DAT-8G-95PE

1 to 8000 MHz 0 to 95 dB 0.25 dB Step 50Ω **SMA Female**

ELECTRICAL SPECIFICATIONS¹, +25°C

6000 - 7200	Parameter	Conditions	Frequency (MHz)	Min.	Тур.	Max.	Unit	
1 - 2000	Attonuation Dange	0.25 dD atom	1 - 7200	0	-	95	٩D	
Attenuation Accuracy? 2000 - 4000	Attenuation Range	0.25 db step	7200 - 8000	0	-	90	ив	
Attenuation Accuracy? 0.25 - 20 dB			1 - 2000	-0.7	0.4	0.4+5.0% of setting		
Attenuation Accuracy 2 Accuracy 2 Attenuation Accuracy 2 Boolean Page 1 2006 - 900 Boolean Page 1 1 - 2000 - 0.4-5.0% of setting - 0.5 - 0.6 - 0.3 - 0.6-6.0% of setting - 0.6 - 0.7 - 1.0 - 0.8+4.5% of setting - 0.6 - 1.2+2.0% of setting - 0.7 - 1.0 - 0.8+4.5% of setting - 0.6 - 1.2+2.0% of setting - 0.7 - 1.0 - 0.8+4.5% of setting - 0.6 - 1.2+2.0% of setting - 0.7 - 1.0 - 0.8+4.5% of setting - 0.7 - 1.0 - 0.8+4.5% of setting - 0.7 - 1.0 - 0.8 - 0.5 - 0.6 - 1.2+2.0% of setting - 2.1 - 0.3 - 1.2000 - 0.4-6.0% of setting - 2.1 - 0.3 - 0.4+6.0% of setting - 2.1 - 0.3 - 0.4+6.0% of setting - 2.1 - 0.8+6.5% of setting - 2.0 - 0.8+6.5% of setting - 2.0 - 0.8+6.5% of setting - 2.0 - 0.9 - 0.2-6.0% of setting - 3.0 - 0.9 - 0.9 - 0.2-6.0% of setting - 3.0 - 0.9 - 0.9 - 0.2-4.0% of setting - 2.7 - 0.2+2.0% of setting - 2.7 - 0.2+0.0% of setting - 2.7 - 0.2-2.0% of setting -			2000 - 4000	-0.7	1.0	0.4+5.0% of setting		
Attenuation Accuracy 2 Accuracy 2 Attenuation Accuracy 2 0.25 - 90 dB 0.25 - 90 dB 0.25 - 95 dB 0.25 - 95 dB 0.26 - 0.25 - 0.25 - 0.25 - 0.25 dB 0.26 - 0.25 - 0.25 dB 0.27 - 0.25 - 0.25 dB 0.27 - 0.25 - 0.25 dB 0.27 - 0.25 - 0.25 dB 0.28 - 0.25 - 0.25 dB 0.28 - 0.25 - 0.25 dB 0.29 - 0.25 - 0.25 dB 0.20 - 0.25 d dB 0.20 - 0.25 d dB 0.20 - 0.25 d dB 0.25 - 90 dB 0.20 - 0.25 d dB 0.25 - 90 dB		0.25 - 20 dB	4000 - 6000	-0.4-5.0% of setting	-0.2	0.75+4.0% of setting		
1 - 2000			6000 - 7200	-0.4-5.0% of setting	-0.5	0.7		
Attenuation Accuracy 2 20.25 · 60 dB 20.25 · 80 d			7200 - 8000	-0.6-6.0% of setting	-0.6	0.3		
Attenuation Accuracy ² Attenuation Accuracy ² Description 1.25 · 60 dB A000 · 6000 Accuracy ² 20.25 · 80 dB A000 · 6000 Accuracy ² Attenuation Accuracy ² Attenuation Accuracy ²			1 - 2000	-0.4-0.5% of setting	1.7	0.9+4.5% of setting		
Attenuation Accuracy 2 Attenuation Accuracy 3 Attenuation Accuracy 2 Attenuation Accuracy 3 Attenuation Accuracy 2 Attenuation Accuracy 3 Attenuation Accuracy 4 Attenuation Accuracy 4 Attenuation Accuracy 5 Attenuation Accuracy 5 Attenuation Accuracy 6 Accuracy 6 Accuracy 7 Accuracy 8 Accuracy 8 Accuracy 9 Accuracy 8 Accuracy 9 Accura			2000 - 4000	-0.7	1.0	0.8+4.5% of setting		
Attenuation Accuracy 2 Accuracy 3 Accuracy 4 Accuracy 2 Accuracy 4 Accuracy 4 Accuracy 2 Accuracy 4 Accuracy 2 Accuracy 4 Accuracy 2 Accuracy 4 Accuracy 4 Accuracy 2 Accuracy 4 Accura		20.25 - 60 dB	4000 - 6000	-0.5-4.5% of setting	-0.6	1.2+2.0% of setting		
Attenuation Accuracy ² Attenuation Accura			6000 - 7200	-0.7-4.5% of setting	-1.8	0.7		
Attenuation Accuracy 2 60.25 - 80 dB 60.25 - 80 dB 4000 - 6000 -0.2 - 5.0% of setting 6000 - 7200 0.2 - 6.0% of setting 6000 - 7200 0.2 - 6.0% of setting 7200 - 8000 -0.7 - 4.5% of setting 2.0 0.2 - 2.0% of setting 3.7 -3.6 + 10.0% of setting 2000 - 4000 -0.4 - 0.5% of setting 2.8 -3.0 + 9.0% of setting 3.7 -3.6 + 10.0% of setting 2000 - 4000 -0.6 - 1.0% of setting 2.8 -3.0 + 9.0% of setting 3.7 -3.6 + 10.0% of setting 2.8 -3.0 + 9.0% of setting 3.7 -3.6 + 10.0% of setting 2.8 -3.0 + 9.0% of setting 2.9 -1.7 + 6.0% of setting 2.9 -1.7 + 6.0% of setting 2.0 -0.4 - 0.5% of setting 2.8 -3.0 + 9.0% of setting 2.9 -1.7 + 6.0% of setting 2.9 -1.7 + 6.0% of setting 2.9 -1.7 + 6.0% of setting 2.0 -0.4 - 0.5% of setting 2.0 -0.6 - 1.0% of setting 2.0 -0.6 -			7200 - 8000	-1.2-4.5% of setting	-2.1	0.3		
Attenuation Accuracy ² 60.25 - 80 dB 4000 - 6000 7200			1 - 2000	-0.4-0.5% of setting	3.0	-0.4+6.0% of setting		
60.25 - 80 dB			2000 - 4000	-0.6-1.0% of setting	2.0	-0.8+6.5% of setting	dB	
1 - 2000	Attenuation Accuracy 2	60.25 - 80 dB	4000 - 6000	-0.2-5.0% of setting	-1.7	2.0+0.5% of setting		
1 · 2000			6000 - 7200	0.2-6.0% of setting	-3.0	0.9		
2000 - 4000			7200 - 8000	-0.7-4.5% of setting	-2.7	0.2+2.0% of setting		
80.25 - 90 dB			1 - 2000	-0.4-0.5% of setting	3.7	-3.6+10.0% of setting		
90.25 - 95 dB 1 - 2000			2000 - 4000	-0.6-1.0% of setting	2.8	-3.0+9.0% of setting		
7200 - 8000		80.25 - 90 dB	4000 - 6000	3.0-9.0% of setting	-2.3	2.0+0.5% of setting		
1 - 2000			6000 - 7200	3.6-10.0% of setting	-3.7	0.9		
90.25 - 95 dB 2000 - 4000 4000 -0.6-1.0% of setting 4000 - 6000 3.0-9.0% of setting -2.3 2.0+0.5% of setting 6000 - 7200 3.6-10.0% of setting -3.7 0.9 1 - 2000 - 4.2 6.0 2000 - 4000 - 5.6 8.0 2000 - 4000 - 7.4 9.0 dB 6000 - 7200 - 8.3 11.5 7200 - 8000 - 10.0 12.0			7200 - 8000	-0.7-4.5% of setting	-2.9	-1.7+6.0% of setting		
90.25 - 95 dB			1 - 2000	-0.4-0.5% of setting	3.7	-3.6+10.0% of setting		
A000 - 6000 3.0-9.0% of setting -2.3 2.0+0.5% of setting		00.05 .05 .10	2000 - 4000	-0.6-1.0% of setting	2.8	-3.0+9.0% of setting		
1 - 2000		90.25 - 95 dB	4000 - 6000	3.0-9.0% of setting	-2.3	2.0+0.5% of setting		
10 dB 2000 - 4000 - 5.6 8.0 dB 4000 - 6000 - 7.4 9.0 dB 6000 - 7200 - 8.3 11.5 7200 - 8000 - 10.0 12.0 dB 6000 - 10.0 dB			6000 - 7200	3.6-10.0% of setting	-3.7	0.9		
nsertion Loss 0 dB 4000 - 6000 - 7.4 9.0 dB 6000 - 7200 - 8.3 11.5 7200 - 8000 - 10.0 12.0 In-Out (within a channel) 3 1 - 8000 - 100 - dB			1 - 2000	-	4.2	6.0		
6000 - 7200	Insertion Loss		2000 - 4000	-	5.6	8.0		
7200 - 8000		0 dB	4000 - 6000	-	7.4	9.0	dB	
In-Out (within a channel) ³ 1 - 8000 - 100 - dB			6000 - 7200	-	8.3	11.5		
solation dB			7200 - 8000	_	10.0	12.0		
		In-Out (within a channel) ³	1 - 8000	-	100	-		
	Isolation	Between channels ⁴	1 - 8000	100	125	_	dB	

^{1.} Attenuator RF ports support simultaneous, bi-directional signal transmission, within the specified power limits. However the specifications are guaranteed for the RF In and RF Out as

noted on the label. There may be minor changes in performance when injecting signals to the RF Out port.

2. Max accuracy defined as ±[absolute error+% of attenuation setting]. For example, if a 20 dB attenuation at a given frequency is defined as max accuracy of "±(0.5 + 3.0%)" then the maximum error at those settings will be: ±(0.5+0.03x20)= ±(0.5+0.6)= ± 1.1 dB.

^{3.} Isolation within a channel is defined as max attenuation plus insertion loss; this is the path loss through the attenuator when initially powered up. After a brief delay (~0.5 sec typically) the

attenuator will revert to a user defined "power-up" state (either max attenuation or a pre-set value).

4. Isolation between channels may drop to 95 dB when both channels being tested are at 0 dB attenuation state.

rogrammable Attenuator RC8DAT-8G-95PE

0 to 95 dB 0.25 dB Step **SMA Female** 50Ω 1 to 8000 MHz

ELECTRICAL SPECIFICATIONS¹, +25°C (CONTINUED)

Parameter	Conditions	Frequency (MHz)	Min.	Тур.	Max.	Unit	
		1 - 2000	-	23	-		
	0.05.40	2000 - 4000	-	21	-		
Return Loss	0 - 95 dB	4000 - 6000	_	19	-	dB	
		6000 - 7200	_	14	-		
	0 - 90 dB	7200 - 8000	-	11	-		
ID2 Innut 5	0 dB setting	1 - 5000	-	+53	-	alD	
IP3 Input ⁵	(P _{IN} = +5 dBm)	5000 - 8000	-	+48	-	dBm	
Attenuation Transition Time ⁶	-	1 - 8000	-	650	-	ns	
Minimum Dwell Time ⁷	High-speed mode	1 - 8000	-	600	-	μs	
Channel Synchronization 8	-	1 - 8000	-	400	-	μs	
Supply Voltage (V _{DC}) ⁹	LICD	-	4.75	5.00	5.25	V	
Supply Current (I _{DC})	USB port	-	-	210	330	mA	
Supply Voltage (V _{DC}) 9	LAN port 10	-	37	48	57	٧	
Supply Current (I _{DC})	LAN port 3	-	-	40	50	mA	
Operating RF Input Power ^{1, 11}	0 - 95 dB	1 - 50	-	_	Note 12	dBm	
	0 - 93 UB	50 - 8000	-	_	+28	ubiil	

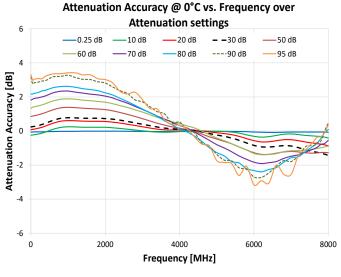
^{5.} Tested with 1 MHz span between signals.

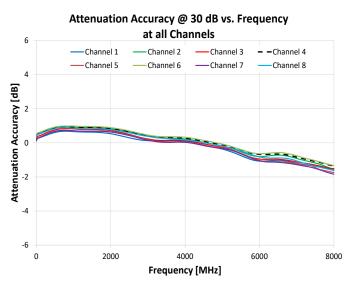
- 6. Attenuation Transition Time is specified as the time between starting to change the attenuation state and settling on the requested attenuation state.
 7. Minimum Dwell Time is the minimum time from settling on one attenuation level to settling to a new one in response to command (without communication protocol delays).
- 8. Channel Synchronization is the delay between the first and last attenuator transitions beginning, in response to a command to set all channels.

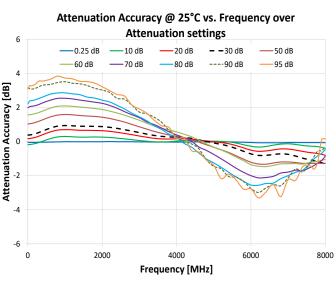
- Power supply can be provided from either USB or LAN port regardless of control method used.
 Compliant with IEEE 802.3af mode A and mode B.
 Total Operating Input Power from both RF In and RF Out ports. Compression level not noted as it exceeds max safe operating power level.
- 12. Derates linearly from +28 dBm at 50 MHz to +17 dBm at 1 MHz.

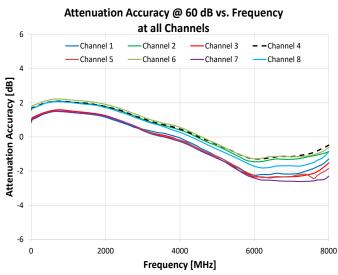
ABSOLUTE MAXIMUM RATINGS 13, 14

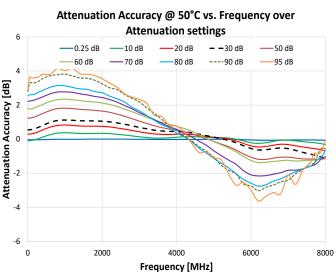
Operating Temperature		0°C to +50°C	
Storage Temperature		-20°C to +85°C	
DC Voltage @ RF Ports		16 V	
V _{USB} MAX		6 V	
V _{LAN} MAX		57 V	
Max RF Power		Derates linearly from +33 dBm at 50 MHz to +20 dBm at 1 MHz	
	50 - 8000 MHz	+33 dBm	

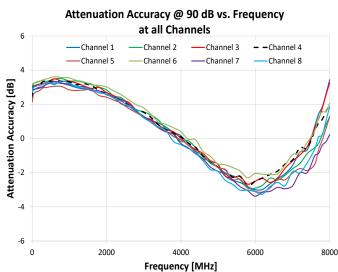

- 13. Permanent damage may occur if any of these limits are exceeded.
- 14. Operating in the range between operating power limits and absolute maximum ratings for extended periods of time may result in reduced life and reliability.

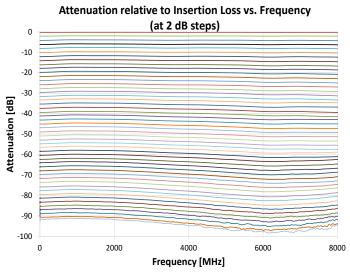


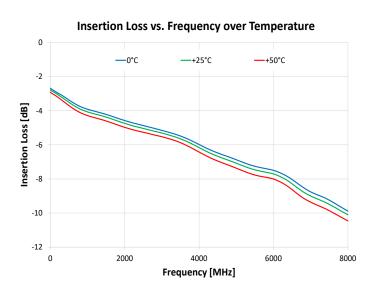

Programmable Attenuator RC8DAT-8G-95PE

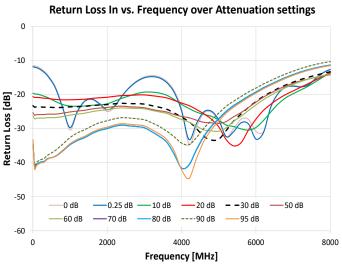

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

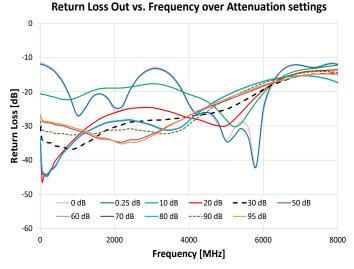

TYPICAL PERFORMANCE GRAPHS

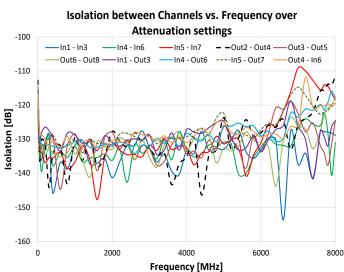


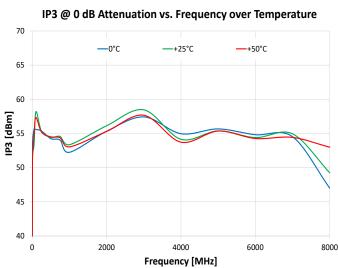





Programmable Attenuator RC8DAT-8G-95PE


 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female


TYPICAL PERFORMANCE GRAPHS (CONTINUED)



Programmable Attenuator **RC8DAT-8G-95PE**

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

CONTROL INTERFACES

Ethernet Control	Supported Protocols	TCP / IP, HTTP, Telnet, SSH, DHCP, UDP (limited)	
Ethernet Control	Max Data Rate	100 Mbps (100 Base-T Full Duplex)	
USB Control	Protocol	HID (Human Interface Device) - High-speed	
OSB Control	Min Communication Time 15	400 μsec typical (full transmit/receive cycle)	

^{15.} USB Min Communication Time is based on the polling interval of the USB HID protocol (125 µsec polling interval, 64 bytes per packet), medium CPU load and no other high-speed USB devices using the USB bus.

SOFTWARE & DOCUMENTATION

Mini-Circuits' full software and support package including user guide, Windows GUI, API, programming manual and examples can be downloaded free of charge (refer to the last page for the download path).

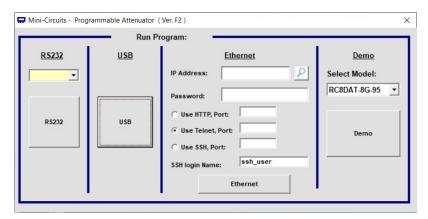
A comprehensive set of software control options is provided:

- GUI for Windows Simple software interface for control via Ethernet and USB.
- Programming / automation via Ethernet:
 - Complete set of control commands which can be sent via any supported protocol.
 - Simple to implement in the majority of modern programming environments.
- Programming / automation via USB:
 - DLL files provide a full API for Windows with a set of intuitive functions which can be implemented in any programming environment supporting .Net Framework or ActiveX.
 - Direct USB programming is possible in any other environment (not supporting .Net or ActiveX).

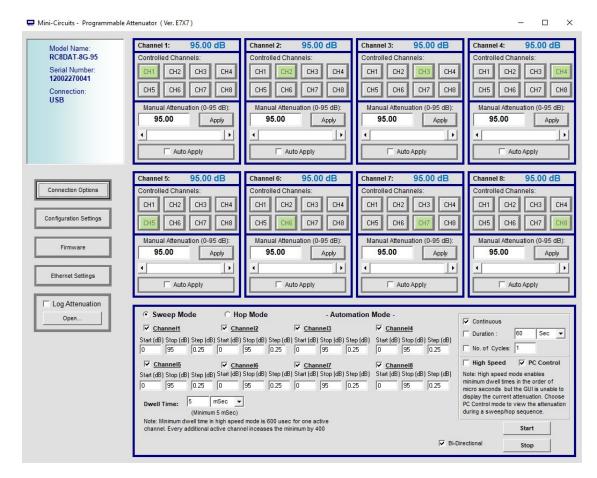
Please contact <u>testsolutions@minicircuits.com</u> for support.

MINIMUM SYSTEM REQUIREMENTS

GUI	Vindows 7 or later	
USB API DLL	Windows 7 or later and programming environment with ActiveX or .NET support	
USB Direct Programming	Linux, Windows 7 or later	
Hardware	Intel i3 (or equivalent) or later	



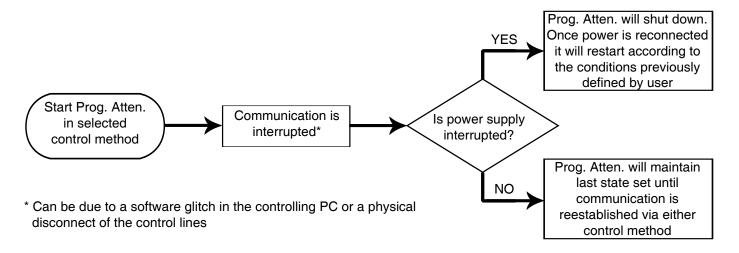
Programmable Attenuator RC8DAT-8G-95PE

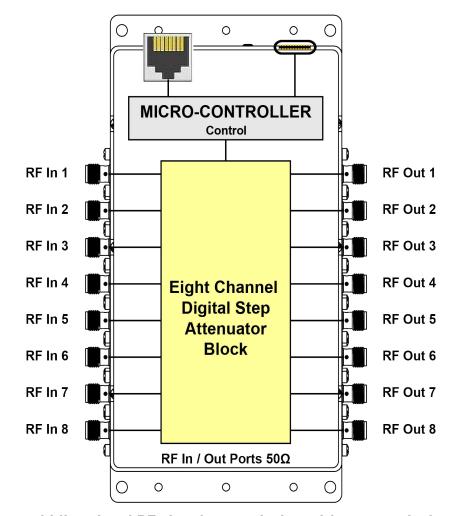

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

GRAPHICAL USER INTERFACE (GUI) FOR WINDOWS - KEY FEATURES

- Connect via USB or Ethernet to control the module.
- Password protected access for safe remote usage over Ethernet.

- Run GUI in "demo mode" to evaluate software without a hardware connection.
- Manual attenuation setting.
- Sweep and Hop attenuation sequences directed from the PC, or entire sequence loaded into the module.
- Attenuator address configuration and firmware upgrade.
- Attenuation at power up may be set to selected attenuation level or last attenuation state recorded.

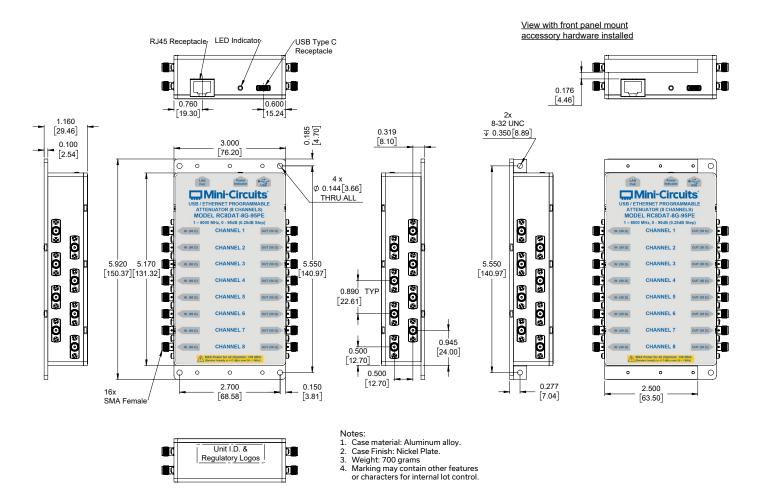



Programmable Attenuator RC8DAT-8G-95PE

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

PROGRAMMABLE ATTENUATOR RESPONSE TO COMMUNICATION INTERRUPT

BLOCK DIAGRAM

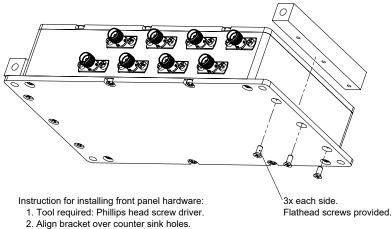

Simultaneous, bidirectional RF signal transmission with symmetrical performance

Programmable Attenuator RC8DAT-8G-95PE

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

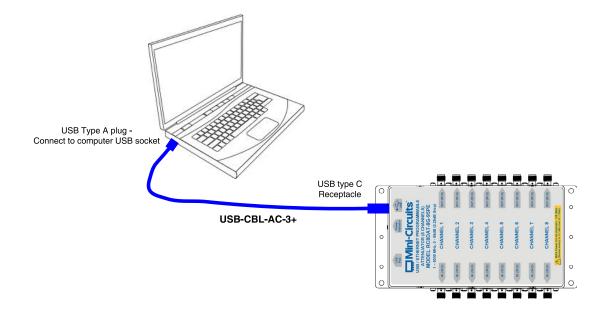
CASE STYLE DRAWING (QE2899)

CONNECTIONS


Port Name	Connector Type	Function
In (50Ω) & Out (50Ω)	SMA female	RF input / output port
USB	USB Type C female	USB control & DC power
Ethernet	RJ45 Socket	LAN control & DC power

rogrammable Attenuator RC8DAT-8G-95PE

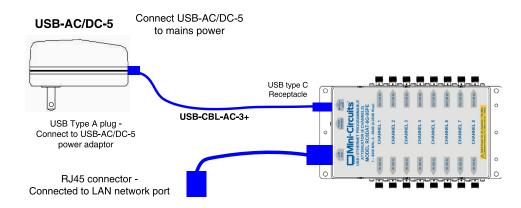
1 to 8000 MHz 0 to 95 dB 0.25 dB Step **SMA Female** 50Ω

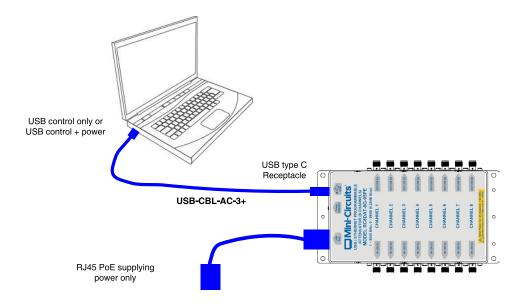

BRACKET MOUNTING INSTRUCTIONS

3. Secure with screws provided.

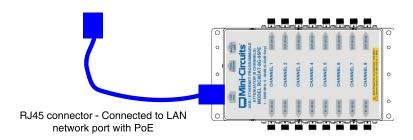
Note: Bracket can be mounted facing either side.

CONNECTION DIAGRAMS USB CONTROL




Programmable Attenuator RC8DAT-8G-95PE

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female


CONNECTION DIAGRAMS (CONTINUE) ETHERNET CONTROL & USB POWER (USING POWER ADAPTER)

ETHERNET POWER & USB CONTROL

ETHERNET POWER & CONTROL

Programmable Attenuator RC8DAT-8G-95PE

 50Ω 1 to 8000 MHz 0 to 95 dB 0.25 dB Step SMA Female

DETAILED MODEL INFORMATION IS AVAILABLE ON OUR WEBSITE

CL		

Performance Data & Graphs	Data Graphs		
Case Style	QE2899		
Environmental Rating	ENV55T1		
Software, User Guide & Programming Manual	https://www.minicircuits.com/softwaredownload/patt.html		
Regulatory Compliance	Refer to user guide for compliance information C UK		
Support	testsolutions@minicircuits.com		

INCLUDED ACCESSORIES 16

Part No.	Qty.	Description
USB-CBL-AC-3+	1	3.3 ft (1.0 m) USB cable: USB type A (Male) to USB type C (Male)
BKT-355-05+	1	Bracket kit including two 2.50" x 0.35" side mounting brackets, screws and washers

^{16.} Additional quantities are available for purchase as optional accessories.

OPTIONAL ACCESSORIES

	Part No.	Description
	USB-CBL-AA-3+	3.3 ft (1.0 m) USB extention Cable: USB type A (Male) to USB type A (Female)
40	CBL-RJ45-MM-5+	5.0 ft (1.5 m) Ethernet cable: RJ45 (Male) to RJ45 (Male) Cat 5E cable
446	USB-AC/DC-5	AC/DC +5V power adaptor with USB connector ^{17, 18}

^{17.} The power adaptor may be used to provide additional power via USB port when connecting several units in daisy chain control.

NOTES:

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at https://www.minicircuits.com/terms/viewterm.html

^{18.} Includes power plugs for US, UK, EU, IL, AU & China. Plugs for other countries are also available. If you need a power cord for a country not listed, please contact testsolutions@minicircuits.com