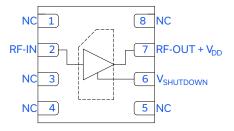


# Low Noise Amplifier

### TSS-23ULN+

**Mini-Circuits** 50 $\Omega$  10 to 2000 MHz Shutdown Feature


#### THE BIG DEAL

- Low Noise Figure, Typ. 0.4 dB
- High Gain, Typ. 20 dB
- High OIP3, Typ. +37.3 dBm
- Fast Shutdown Feature, 7.5 ns
- Single Supply Voltage, +5 V at 70.6 mA
- 2x2 mm 8-Lead QFN-style Package



#### Generic photo used for illustration purposes only

#### FUNCTIONAL DIAGRAM (TOP VIEW)



#### **APPLICATIONS**

#### Cellular Infrastructure

- Satellite Communications
- Radar, EW, and ECM Defense Systems

#### **PRODUCT OVERVIEW**

The TSS-23ULN+ is a pHEMT-based wideband, ultra-low noise MMIC amplifier with high P1dB, high IP3, and voltage-controlled shutdown capability. Operating from 10 to 2000 MHz, this amplifier features typical 0.4 dB noise figure, 20 dB gain, +20.3 dBm P1dB, and +37.3 dBm OIP3. This combination of characteristics makes it ideal for sensitive receiver applications. TSS-23ULN+ operates on a single +5 V supply and comes in a small, low profile, 2x2 mm QFN-style package for ease of integration into dense circuit board layouts.

#### **KEY FEATURES**

| Features                                                                                     | Advantages                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ultra-Low Noise Figure, Typ. 0.4 dB                                                          | Operating from a single supply, this ultra-low noise MMIC enables low system noise figure performance, without the need for complicated discrete-based solutions.                                                                              |
| High Gain, Typ. 20 dB                                                                        | The MMIC amplifier's high gain enables fewer system components in receiver signal chains.                                                                                                                                                      |
| Shutdown Feature                                                                             | A voltage-controlled shutdown feature allows the part to be quickly disabled to conserve power when not in use.                                                                                                                                |
| High Dynamic Range<br>• Gain, Typ. 20 dB<br>• OIP3, Typ. +37.3 dBm<br>• P1dB, Typ. +20.3 dBm | The MMIC amplifier's unique combination of low noise figure, high gain, high P1dB, and high OIP3 enables optimum performance in sensitive high dynamic range receivers.                                                                        |
| 2x2 mm 8-Lead QFN-Style Package                                                              | Small footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB. Industry standard packaging allows for ease of assembly in high volume manufacturing processes. |





## Low Noise Amplifier

**Mini-Circuits** 50 $\Omega$  10 to 2000 MHz Shutdown Feature

#### **ELECTRICAL SPECIFICATIONS<sup>1</sup> AT +25°C AND Zo = 50Ω UNLESS NOTED OTHERWISE**

|                                                                        |                    |                                            | Amplifier – ON | 1                                                       | Amplifier - ON                                           | Amplifier -OFF |       |
|------------------------------------------------------------------------|--------------------|--------------------------------------------|----------------|---------------------------------------------------------|----------------------------------------------------------|----------------|-------|
| Parameter                                                              | Condition<br>(MHz) | $V_{DD}$ = +5 V<br>( $V_{SHUTDOWN}$ = 0 V) |                | V <sub>DD</sub> = +3 V<br>(V <sub>SHUTDOWN</sub> = 0 V) | V <sub>DD</sub> = +5 V<br>(V <sub>SHUTDOWN</sub> = +5 V) | Units          |       |
|                                                                        |                    | Min.                                       | Тур.           | Max.                                                    | Тур.                                                     | Тур.           |       |
| Frequency Range                                                        |                    | 10                                         |                | 2000                                                    | 10-2000                                                  | 10-2000        | MHz   |
|                                                                        | 10                 | 28.2                                       | 29.4           |                                                         | 27.7                                                     | -21.3          |       |
|                                                                        | 500                | 23.6                                       | 24.7           |                                                         | 23.5                                                     | -30.3          |       |
| Gain                                                                   | 1000               | 18.9                                       | 20.0           |                                                         | 18.9                                                     | -33.3          | dB    |
|                                                                        | 1500               | 15.7                                       | 16.9           |                                                         | 15.9                                                     | -30.4          |       |
|                                                                        | 2000               | 13.3                                       | 14.5           |                                                         | 13.6                                                     | -24.7          |       |
|                                                                        | 10                 |                                            | 9              |                                                         | 7                                                        |                |       |
|                                                                        | 500                |                                            | 13             |                                                         | 10                                                       |                |       |
| Input Return Loss                                                      | 1000               |                                            | 15             |                                                         | 12                                                       |                | dB    |
|                                                                        | 1500               |                                            | 16             |                                                         | 13                                                       |                |       |
|                                                                        | 2000               |                                            | 17             |                                                         | 14                                                       |                |       |
|                                                                        | 10                 |                                            | 20             |                                                         | 19                                                       |                |       |
|                                                                        | 500                |                                            | 14             |                                                         | 16                                                       |                |       |
| Output Return Loss                                                     | 1000               |                                            | 13             |                                                         | 16                                                       |                | dB    |
|                                                                        | 1500               |                                            | 12             |                                                         | 15                                                       |                |       |
|                                                                        | 2000               |                                            | 12             |                                                         | 15                                                       |                |       |
| Isolation                                                              | 10-2000            |                                            | 26.5           |                                                         | 25.4                                                     | 30.2           | dB    |
|                                                                        | 10                 |                                            | +21.9          |                                                         | +16.8                                                    |                |       |
|                                                                        | 500                |                                            | +20.4          |                                                         | +15.9                                                    |                |       |
| Output Power at 1dB Compression (P1dB)                                 | 1000               |                                            | +20.3          |                                                         | +15.8                                                    |                | dBm   |
|                                                                        | 1500               |                                            | +19.2          |                                                         | +16.5                                                    |                |       |
|                                                                        | 2000               |                                            | +19.4          |                                                         | +16.2                                                    |                |       |
|                                                                        | 10                 |                                            | +34.3          |                                                         | +28.8                                                    |                |       |
|                                                                        | 500                |                                            | +36.8          |                                                         | +28.0                                                    |                |       |
| Output Third-Order Intercept Point<br>(P <sub>OUT</sub> = +4 dBm/Tone) | 1000               |                                            | +37.3          |                                                         | +28.5                                                    |                | dBm   |
|                                                                        | 1500               |                                            | +38.3          |                                                         | +28.7                                                    |                |       |
|                                                                        | 2000               |                                            | +36.1          |                                                         | +28.7                                                    |                |       |
|                                                                        | 10                 |                                            | 1.4            |                                                         | 1.5                                                      |                |       |
|                                                                        | 500                |                                            | 0.3            |                                                         | 0.3                                                      |                |       |
| Noise Figure <sup>2</sup>                                              | 1000               |                                            | 0.4            |                                                         | 0.3                                                      |                | dB    |
|                                                                        | 1500               |                                            | 0.4            |                                                         | 0.5                                                      |                |       |
|                                                                        | 2000               |                                            | 0.5            |                                                         | 0.4                                                      |                |       |
| ON Time (50% $V_{CTRL}$ to 90% RF)                                     |                    |                                            | 9.5            |                                                         |                                                          |                | ns    |
| RISE Time (10% RF to 90% RF)                                           |                    |                                            | 5.4            |                                                         |                                                          |                | ns    |
| FALL Time (90% RF to 10% RF)                                           |                    |                                            | 6.2            |                                                         |                                                          |                | ns    |
| OFF Time (50% $V_{\mbox{\tiny CTRL}}$ to 10% RF)                       |                    |                                            | 7.5            |                                                         |                                                          |                | ns    |
| Device Operating Voltage ( $V_{DD}$ )                                  |                    | +2.7                                       | 5              | +5.25                                                   | +3                                                       | +5             | V     |
| Device Operating Current $(I_{DD})^3$                                  |                    |                                            | 70.6           |                                                         | 36.5                                                     | 3              | mA    |
| Device Shutdown Voltage (V <sub>SHUTDOWN</sub> )                       |                    |                                            | 0              |                                                         | 0                                                        | +5             | V     |
| Device Shutdown Current (I <sub>SHUTDOWN</sub> )                       |                    |                                            | 0.27           |                                                         | 0.27                                                     | 0.69           | mA    |
| Device Current Variation vs. Temperature <sup>4</sup>                  |                    |                                            | 0.007          |                                                         | 0.007                                                    |                | mA/°C |
| Device Current Variation vs. Voltage⁵                                  |                    |                                            | 0.0168         |                                                         | 0.0168                                                   |                | mA/mV |

1. Tested in Mini-Circuits Characterization Test/Evaluation Board TB-TSS-23ULNC+. See Figure 2. Board loss de-embedded to the device.

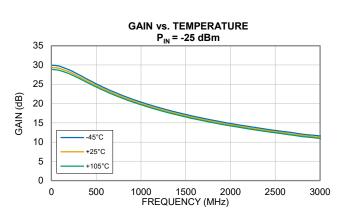
2. Typical value verified and set by averaging performance across multiple measurement setups.

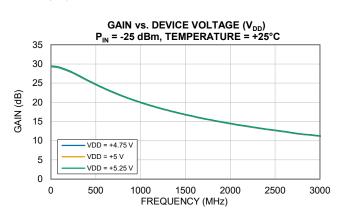
3. Current at  $P_{\rm IN}$  = -25 dBm. Increases to 90 mA at P1dB.

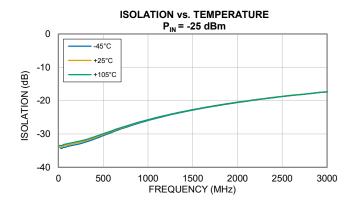
4. (Current at +105°C - Current at -45°C) / (+150°C)

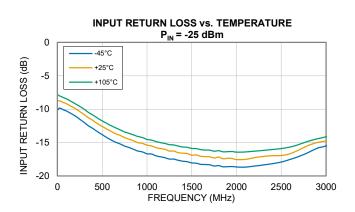
5. (Current at +5.25 V - Current at +4.75 V) / (+0.5 V)

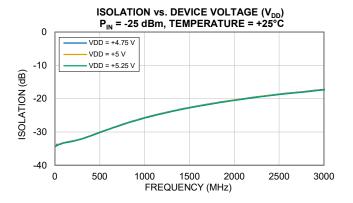
#### Mini-Circuits

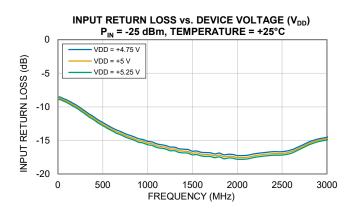




Mini-Circuits


10 to 2000 MHz Shutdown Feature


#### **TYPICAL PERFORMANCE GRAPHS**


Note: All data taken at nominal condition  $V_{DD}$  = +5 V and  $V_{SHUTDOWN}$  = 0 V unless noted otherwise.

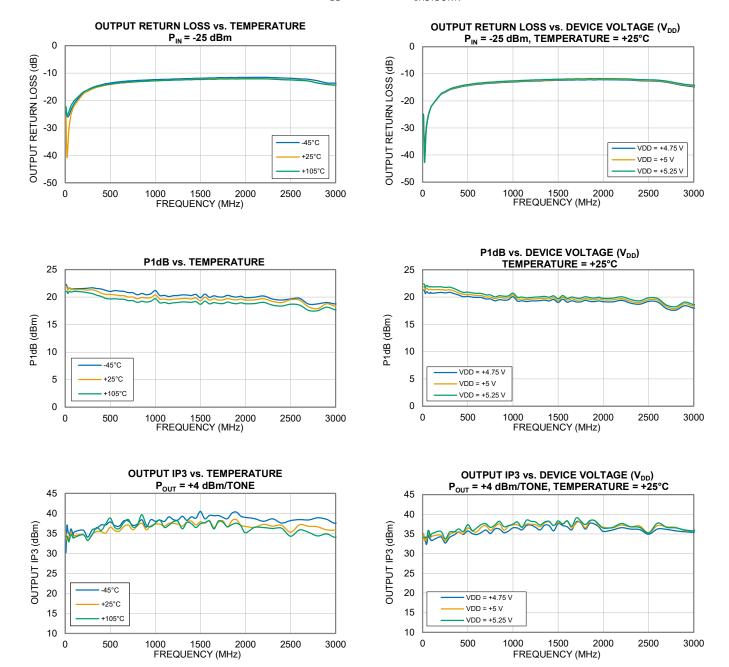










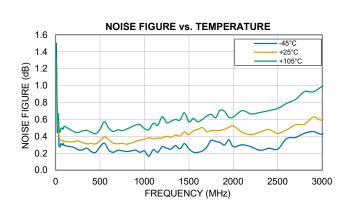



**Mini-Circuits** 50 $\Omega$  10 to 2000 MHz Shutdown Feature

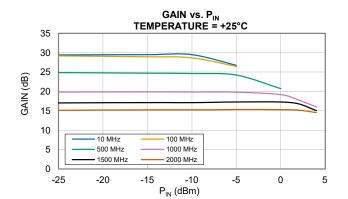
TYPICAL PERFORMANCE GRAPHS

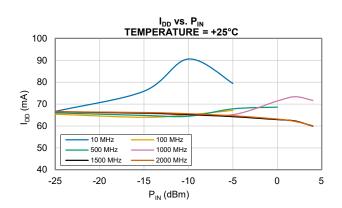
Note: All data taken at nominal condition  $V_{DD}$  = +5 V and  $V_{SHUTDOWN}$  = 0 V unless noted otherwise.

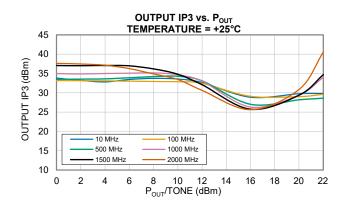


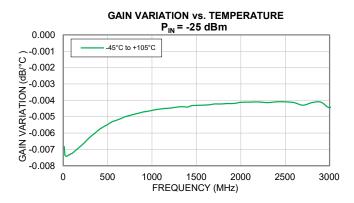



Mini-Circuits 50Ω


10 to 2000 MHz Shutdown Feature


#### **TYPICAL PERFORMANCE GRAPHS**


Note: All data taken at nominal condition  $V_{DD}$  = +5 V and  $V_{SHUTDOWN}$  = 0 V unless noted otherwise.

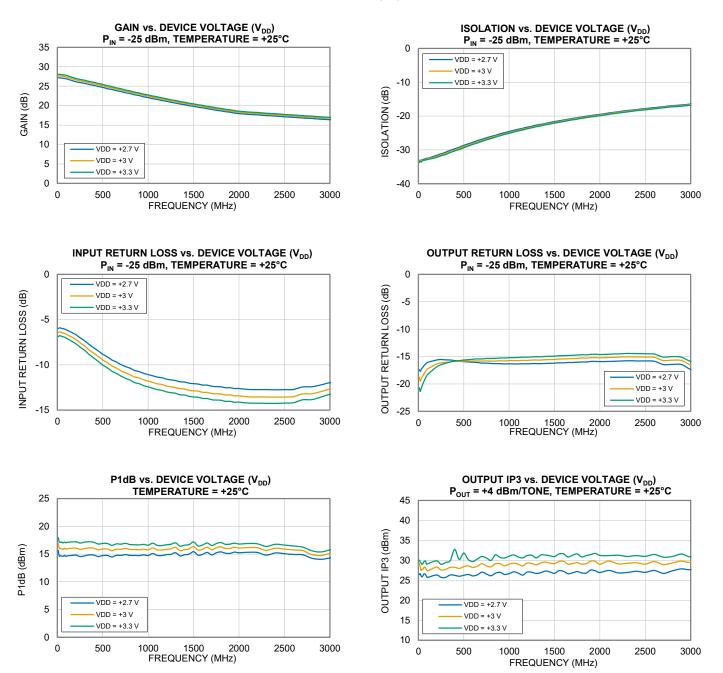


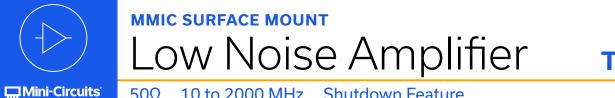








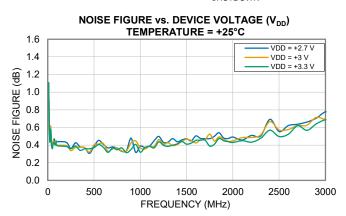




**Mini-Circuits** 50 $\Omega$  10 to 2000 MHz Shutdown Feature

#### **TYPICAL LOW VOLTAGE PERFORMANCE GRAPHS**

Note: All data taken at nominal condition V<sub>SHUTDOWN</sub> = 0 V unless noted otherwise.






### TSS-23ULN+

10 to 2000 MHz Shutdown Feature 50Ω

#### **TYPICAL LOW VOLTAGE PERFORMANCE GRAPHS**

Note: All data taken at nominal condition  $V_{SHUTDOWN} = 0$  V unless noted otherwise.





# Low Noise Amplifier

## TSS-23ULN+

10 to 2000 MHz Shutdown Feature Mini-Circuits 50Ω

#### **ABSOLUTE MAXIMUM RATINGS<sup>6</sup>**

| Parameter                              | Ratings         |
|----------------------------------------|-----------------|
| Operating Temperature                  | -45°C to +105°C |
| Storage Temperature                    | -65°C to +150°C |
| Total Power Dissipation                | 0.9 W           |
| Junction Temperature <sup>7</sup>      | +150°C          |
| Input Power (CW)                       |                 |
| $V_{DD}$ = +5 V & $V_{SHUTDOWN}$ = 0 V | +21 dBm         |
| $V_{DD}$ = +3 V & $V_{SHUTDOWN}$ = 0 V | +21 dBm         |
| DC Voltage on RF-OUT & $V_{DD}$        |                 |
| V <sub>SHUTDOWN</sub> = 0 V            | +10 V           |
| V <sub>SHUTDOWN</sub> = +5 V           | +10 V           |
| DC Voltage on RF-IN                    |                 |
| V <sub>SHUTDOWN</sub> = 0 V            | +1 V            |
| V <sub>SHUTDOWN</sub> = +5 V           | +1 V            |
| DC Voltage on V <sub>SHUTDOWN</sub>    |                 |
| $V_{DD} = +5 V$                        | +10 V           |
| V <sub>DD</sub> = +3 V                 | +10 V           |
| DC Current on RF-OUT & $V_{DD}$        |                 |
| V <sub>SHUTDOWN</sub> = 0 V            | 100 mA          |
| V <sub>SHUTDOWN</sub> = +5 V           | 10 mA           |
| DC Current V <sub>SHUTDOWN</sub>       |                 |
| V <sub>DD</sub> = +5 V                 | 10 mA           |
| $V_{DD} = +3 V$                        | 10 mA           |

#### **POWER ON / POWER OFF LOGIC**

| Amplifier State          | V <sub>DD</sub> |      |         | V <sub>SHUTDOWN</sub> |         |         |
|--------------------------|-----------------|------|---------|-----------------------|---------|---------|
| Ampliner State           | Min             | Тур. | Max     | Min                   | Тур.    | Max     |
| Amplifier – ON           |                 | +5 V | +5.25 V | 0 V                   | 0 V     | +1.3 V  |
| (V <sub>DD</sub> = +5 V) | +2.7 V          |      |         |                       |         |         |
| Amplifier – OFF          |                 |      |         | +1.4 V                | +5 V    | +5.25 V |
| (V <sub>DD</sub> = +5 V) |                 |      |         |                       |         |         |
| Amplifier – ON           |                 |      |         | οV                    | 0 V     | .1.2.1/ |
| (V <sub>DD</sub> = +3 V) | +2.7 V          | +3 V | +5.25 V | 0 V                   | 0 V     | +1.3 V  |
| Amplifier – OFF          |                 |      |         | . 1 . 4 . 1           | . 2.) ( |         |
| (V <sub>DD</sub> = +3 V) |                 |      |         | +1.4 V                | +3 V    | +5.25 V |

6. Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.

7. Peak temperature on top of Die.

#### THERMAL RESISTANCE

| Parameter                                          | Ratings  |  |
|----------------------------------------------------|----------|--|
| Thermal Resistance (Θ <sub>JC</sub> ) <sup>8</sup> | 48.7°C/W |  |

8.  $\Theta_{JC}$ = (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

#### **ESD RATING**

|     | Class | Voltage Range    | Reference Standard          |
|-----|-------|------------------|-----------------------------|
| HBM | 1A    | 250 V to < 500 V | ANSI/ESDA/JEDEC JS-001-2023 |
| CDM | C3    | > 1000 V         | ANSI/ESDA/JEDEC JS-002-2022 |



ESD HANDLING PRECAUTION: This device is designed to be Class 1A for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

#### **MSL RATING** Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020E /JEDEC J-STD-033C



# ow Noise Amplifier.

## TSS-23ULN+

Mini-Circuits

10 to 2000 MHz Shutdown Feature

#### **FUNCTIONAL DIAGRAM**

50Ω

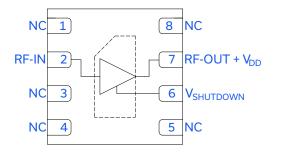



Figure 1. TSS-23ULN+ Functional Diagram

#### **PAD DESCRIPTION**

| Function                 | Pad<br>Number    | Description (Refer to Figure 2)                                                                 |
|--------------------------|------------------|-------------------------------------------------------------------------------------------------|
| RF-OUT + V <sub>DD</sub> | 7                | RF-OUT + $V_{DD}$ Pad connects to RF-Output port and voltage input port, $V_{DD}$ .             |
| V <sub>SHUTDOWN</sub>    | 6                | DC Input Pad connects to voltage input port, $V_{\text{SHUTDOWN}}$                              |
| RF-IN                    | 2                | RF-IN Pad connects to RF Input port.                                                            |
| NC                       | 1, 3-5,<br>and 8 | Not used internally. May be connected to ground or left floating. Grounded on evaluation board. |
| GND                      | Paddle           | Connects to ground.                                                                             |

#### **EVALUATION BOARD**



Figure 2. TSS-23ULN+ Evaluation and Application Circuit

| Component | Size | Value | Part Number | Manufacturer |
|-----------|------|-------|-------------|--------------|
| R1-R4     | 0402 | 0Ω    | RK73Z1ETTP  | KOA Speer    |

#### **Electrical Parameters and Conditions**

Gain, Return Loss, Output Power at 1 dB Compression (P1dB), Output IP3 (OIP3), and Noise Figure measured using N5242A PNA-X microwave network analyzer.

Conditions:

1. Gain and Return Loss:  $P_{IN} = -25 \text{ dBm}$ 

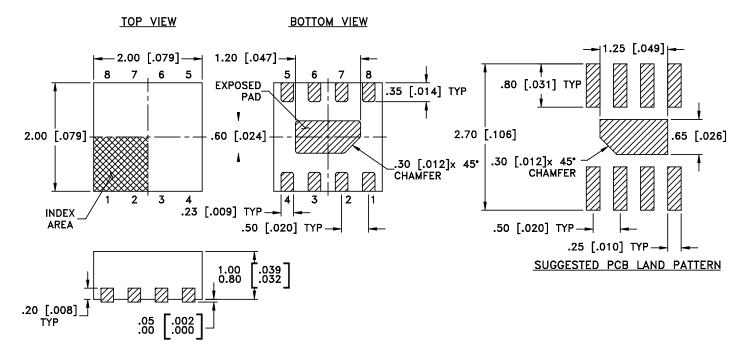
2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, +4 dBm/tone at output.

#### Power ON/Power OFF Sequence:

Caution: Permanent damage to the device will occur if the Power ON and Power OFF sequences are not followed.

#### **POWER ON:**

- 1. Set  $V_{SHUTDOWN} = 0$  V for ON mode or  $V_{SHUTDOWN} = +5$  V for OFF mode. 2. Set  $V_{DD} = +5$  V.
- 3. Turn on V<sub>SHUTDOWN</sub>.
- 4. Turn on V<sub>DD</sub>.


#### **POWER OFF:**

- 1. Turn off RF signal.
- 2. Turn off  $V_{DD.}$
- 3. Turn off V<sub>SHUTDOWN</sub>.




**Mini-Circuits** 50 $\Omega$  10 to 2000 MHz Shutdown Feature

#### **CASE STYLE DRAWING**



Weight: 0.006 grams Dimensions are in mm [Inches]. Tolerances: 2Pl. +/- 0.256 [0.01]; 3 Pl. 0.127 [0.005] mm [inches]



Marking may contain other features or characters for internal lot control.



## Low Noise Amplifier

#### Mini-Circuits 10 to 2000 MHz Shutdown Feature 50Ω

#### ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASHBOARD

**CLICK HERE** 

| Performance Data & Graphs             | Data<br>Graphs<br>S-Parameter (S2P Files) Data Set (.zip file)    |
|---------------------------------------|-------------------------------------------------------------------|
| Case Style                            | MC1631-1. Plastic package, exposed paddle, Lead Finish: Matte-Tin |
| RoHS Status                           | Compliant                                                         |
| Tape & Reel                           | F66                                                               |
| Standard Quantities Available on Reel | 7" Reels with 20, 50, 100, 200, 500, 1000, 2000, or 3000 devices  |
| Suggested Layout for PCB Design       | PL-815                                                            |
| Evaluation Board                      | TB-TSS-23ULNC+<br>Gerber File                                     |
| Environmental Ratings                 | ENV08T1                                                           |

NOTES

- Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions. Β.
- The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html C.



A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.