

### Monolithic Amplifier

50Ω 22 to 43.5 GHz

**TSS-44+** 

#### **THE BIG DEAL**

- 22 to 43.5 GHz for 5G Applications
- Gain, 17.6 dB typ. & Flatness, ±0.9 dB to 40 GHz
- · Excellent active directivity, 28 dB typ.
- Positive Supply Voltage, +4V, 22mA
- Integrated DC blocks, Bias-Tee & Microwave bypass capacitor
- Unconditionally Stable
- Aqueous washable; 3x3mm SMT package
- Shutdown feature



Generic photo used for illustration purposes only

CASE STYLE: DQ1225

### +RoHS Compliant The +Suffix identifies RoHS Compliance. See our website for methodologies and qualifications

#### **APPLICATIONS**

- 5G
- Radio Navigation
- Mobile
- Fixed satellite
- Space research

#### **PRODUCT OVERVIEW**

The TSS-44+ is a surface mount, MMIC amplifier with shutdown feature fabricated using E-PHEMT technology and is a fully integrated 3-stage gain block up to 43.5 GHz with excellent active directivity. It is packaged in industry standard 3x3 mm MCLP™ package, which provides excellent RF and thermal performance. The TSS-44+ integrates the entire matching network with the majority of the bias circuit inside the package, reducing the need for complicated external circuits. This approach makes the TSS-44+ extremely flexible and enables simple, straightforward use.

#### **KEY FEATURES**

| Feature                         | Advantages                                                                                                                                                                                                                                        |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wideband, 22 to 43.5 GHz        | The broad frequency range supports a wide array of requirements including telecommunications applications such as 5G and microwave radio backhaul, broadband commercial test and measurement systems, radar and commercial satellite applications |
| Excellent Gain Flatness         | Typical ±0.9 dB gain flatness across the entire frequency range minimizes the need for external equalizer networks making it a great fit for instrumentation and other broadband applications                                                     |
| High Directivity                | With active directivity of 28 dB, the TSS-44+ is an excellent choice for buffering broadband circuits. eliminating the need for an expensive isolator in most cases.                                                                              |
| Shutdown feature                | Allow users to turn on and off the amplifier with pulsed signals while keeping the power supply at constant voltage.                                                                                                                              |
| Small size                      | 3x3 mm, 12-lead MCLP™ package                                                                                                                                                                                                                     |
| Integrated DC Blocks & Bias-Tee | Saves motherboard space and minimizes overall cost. Very user friendly.                                                                                                                                                                           |



# Monolithic Amplifier

**TSS-44+** 

### ELECTRICAL SPECIFICATIONS¹ AT +25°C, ZO=50Ω, AND V<sub>DD</sub>=+4V, UNLESS OTHERWISE NOTED.

| Davameter                                              | Candition (CU-) | Amplifier-ON |       |      | Amplifier-OFF | Haita |
|--------------------------------------------------------|-----------------|--------------|-------|------|---------------|-------|
| Parameter                                              | Condition (GHz) | Min.         | Тур.  | Max. | Тур.          | Units |
| Frequency Range                                        |                 | 22           |       | 43.5 | 22-43.5       | GHz   |
|                                                        | 22              |              | 3.7   |      | _             |       |
|                                                        | 25              |              | 3.3   |      | _             |       |
| Noise Figure                                           | 30              |              | 3.2   |      | _             | dB    |
| Noise rigure                                           | 35              |              | 3.3   |      | _             | иь    |
|                                                        | 40              |              | 3.5   |      | _             |       |
|                                                        | 43.5            |              | 4.2   |      | _             |       |
|                                                        | 22              | 13.5         | 15.8  | 18.6 | -41           |       |
|                                                        | 25              | 14.3         | 16.8  | 19.7 | -33           |       |
| C-i-                                                   | 30              | 14.8         | 17.6  | 20.4 | -29           | dB    |
| Gain                                                   | 35              | _            | 17.7  | _    | -30           | ав    |
|                                                        | 40              | _            | 15.7  | _    | -27           |       |
|                                                        | 43.5            | _            | 10.0  | _    | -24           |       |
| Gain Flatness                                          | 22-40           |              | 0.9   |      | _             | dB    |
| Directivity                                            | 22-43.5         |              | 28    |      | _             | dB    |
|                                                        | 22              |              | 10    |      | 3             |       |
|                                                        | 25              |              | 17    |      | 6             |       |
| Land Balance Land                                      | 30              |              | 16    |      | 5             | JD    |
| nput Return Loss                                       | 35              |              | 12    |      | 3             | dB    |
|                                                        | 40              |              | 9     |      | 5             |       |
|                                                        | 43.5            |              | 8     |      | 5             |       |
|                                                        | 22              |              | 13    |      | 9             |       |
|                                                        | 25              |              | 14    |      | 8             |       |
| 0                                                      | 30              |              | 18    |      | 9             | ID.   |
| Output Return Loss                                     | 35              |              | 9     |      | 7             | dB    |
|                                                        | 40              |              | 7     |      | 4             |       |
|                                                        | 43.5            |              | 9     |      | 9             |       |
|                                                        | 22              |              | +1.2  |      | _             |       |
|                                                        | 25              |              | +1.8  |      | _             |       |
|                                                        | 30              |              | +4.1  |      | _             |       |
| Output Power @1dB compression AMP-ON                   | 35              |              | +6.4  |      | _             | dBm   |
|                                                        | 40              |              | +7.8  |      | _             |       |
|                                                        | 43.5            |              | +8.2  |      | _             |       |
|                                                        | 22              |              | +10.1 |      | _             |       |
|                                                        | 25              |              | +10.1 |      | _             |       |
| Output IP3                                             | 30              |              | +12.7 |      | _             |       |
| Pout=-10dBm/tone)                                      | 35              |              | +16.7 |      | _             | dBm   |
|                                                        | 40              |              | +15.5 |      | _             |       |
|                                                        | 43.5            |              | +15.9 |      | _             |       |
| Device Operating Voltage (V <sub>DD</sub> )            | 1               | +3.8         | +4.0  | +4.2 | +4.0          | V     |
| Device Operating Current (Id)                          |                 | _            | 22    | 36   | 3             | mA    |
| Control Voltage (V <sub>G</sub> )                      |                 | +3.8         | +4.0  | +4.2 | 0             | V     |
| Control Current (I <sub>G</sub> )                      |                 |              | 8     |      | 2             | mA    |
| DC Current (Id) Variation Vs. Temperature <sup>2</sup> |                 |              | -15   |      | _             | μΑ/°C |
| DC Current (Id) Variation Vs. Voltage                  |                 |              | 0.006 |      | _             | mA/mV |
| Thermal Resistance                                     | 1               |              | 51.9  | +    | _             | °C/W  |

<sup>1</sup> Measured on Mini-Circuits Characterization test board TB-TSS-44+. See Characterization Test Circuit (Fig. 1)

#### ARSOLLITE MAXIMUM RATINGS3

| ABSOLUTE MAXIMUM RATINGS                         |                                          |  |
|--------------------------------------------------|------------------------------------------|--|
| Parameter                                        | Ratings                                  |  |
| Operating Temperature (ground lead)              | -40°C to +85°C                           |  |
| Storage Temperature                              | -55°C to +100°C                          |  |
| Total Power Dissipation                          | 0.94 W                                   |  |
| Input Power                                      | +19 dBm (5 min. max), 8 dBm (continuous) |  |
| DC Voltage V <sub>DD</sub> <sup>4</sup> (Pad 11) | +6 V                                     |  |
| DC Voltage V <sub>G</sub> <sup>5</sup> (Pad 12)  | +5 V                                     |  |

<sup>3.</sup> Permanent damage may occur if these limits are exceeded.

#### **CONTROL VOLTAGE (V<sub>c</sub>) FIG. 1**

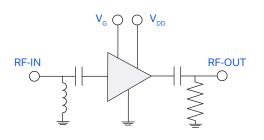
|               | Min. | Тур. | Max. | Units |
|---------------|------|------|------|-------|
| Amplifier-ON  | 3.8  | 4    | 4.2  | V     |
| Amplifier-OFF | _    | 0    | 0.2  | V     |

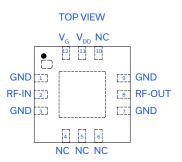
<sup>2 (</sup>Current at 85°C - Current at -45°C)/130

<sup>4.</sup> Measured by keeping VG=0V.

<sup>5.</sup> Measured by keeping Vdd=5V.




# Monolithic Amplifier

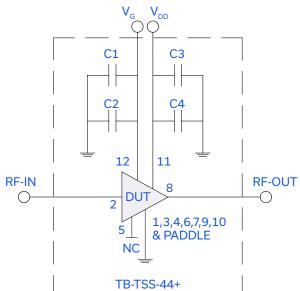

**TSS-44+** 

#### **SWITCHING SPECIFICATIONS (RISE/FALL TIME)**

| Parameter                |                                  |   | Тур. | Max. | Units |
|--------------------------|----------------------------------|---|------|------|-------|
| Amplifier ON to Shutdown | OFF TIME (50% Control to 10% RF) | _ | 9.8  | _    |       |
| Ampliner ON to Shutdown  | FALL TIME (90 to 10% RF)         | _ | 9.2  | _    | μs    |
| Amplifier Shutdown to ON | ON TIME (50% Control to 90% RF)  | _ | 11.2 | _    |       |
| Ampliner Shutdown to ON  | RISE TIME (10% to 90% RF)        | _ | 10.7 | _    | μs    |
| Control Voltage Leakage  |                                  |   | 2.0  | _    | mV    |

#### SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION






| Function        | Pad Number | Description (See Application Circuit, Fig. 1)                  |
|-----------------|------------|----------------------------------------------------------------|
| RF-IN           | 2          | RF input pad                                                   |
| RF-OUT          | 8          | RF output pad                                                  |
| V <sub>DD</sub> | 11         | DC power supply (VDD)                                          |
| GND             | 1,3.7,9    | Connected to ground.                                           |
| V <sub>G</sub>  | 12         | Control voltage for shutdown(VG)                               |
| NC              | 4,5,6,10   | No internal connection. Recommended usage per PCB layer PL-616 |



## Monolithic Amplifier

#### CHARACTERIZATION TEST CIRCUIT / RECOMMENDED APPLICATION CIRCUIT



| Component | Size | Value | Part Number        | Manufacturer |
|-----------|------|-------|--------------------|--------------|
| C1,C3     | 0402 | 0.1uF | GRM155R71C104KA88D | Murata       |
| C2,C4     | 0402 | 100pF | GRM1555C1H101JA01J | Murata       |

Fig 1. Block diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-TSS-44+)

Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5244A PNA-X microwave network analyzer.

- 1. Gain and Return loss: P<sub>IN</sub>= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -10dBm/tone at output.
- 3. Switching Time:

NF Signal:P<sub>IN</sub>=-25dBm, fRF=22GHz Vdd=4VDC, VG=Pulse Signal at 1kHz with Vhigh=4V, Vlow=0V& 50% duty cycle

#### **PRODUCT MARKING**



Marking may contain other features or characters for internal lot control



## Monolithic Amplifier

**TSS-44+** 

#### ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. CLICK HERE

| Performance Data                                     | Data Table<br>Swept Graphs<br>S-Parameter (S2P Files) Data Set (.zip file) |
|------------------------------------------------------|----------------------------------------------------------------------------|
| Case Style                                           | DQ1225<br>Plastic package, exposed paddle lead finish: Matte-Tin           |
| Tape & Reel<br>Standard quantities available on reel | F66<br>7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices              |
| Suggested Layout for PCB Design                      | PL-616                                                                     |
| Evaluation Board                                     | TB-TSS-44+                                                                 |
| Environmental Ratings                                | ENV08T1                                                                    |

#### **ESD RATING**

Human Body Model (HBM): 0 (Pass 200V) in accordance with ANSI/ESD STM 5.1 - 2001

#### NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at <a href="https://www.minicircuits.com/terms/viewterm.html">www.minicircuits.com/terms/viewterm.html</a>

