Surface Mount **Frequency Mixer**

Level 10 (LO Power +10 dBm) 2 to 600 MHz

Maximum Ratings

Operating Temperature	-55°C to 100°C					
Storage Temperature	-55°C to 100°C					
RF Power	50mW					
IF Current	40mA					
Permanent damage may occur if any of these limits are exceeded.						

Pin Connections

LO	4
RF	1
IF	2
GROUND	3
CASE GROUND	3

Tolerance to be within ±.002

Outline Dimensions (inch)

	•					
G	F	E	D	С	В	Α
.06	.21	.23	.240	.255	.48	.50
1.52	5.33	5.84	6.10	6.48	12.19	12.70
wt	N	M	L	K	J	н
grams	.005	.09	.020	.16	.09	.100
1.9	0.13	2.29	0.51	4.06	2.29	2.54

Demo Board MCL PIN: TB-201 Suggested PCB Layout (PL-081)

NOTES: 1.TRACE WIDTH IS SHOWN FOR ROGERS R04350B WITH DIELECTRIC THICKNESS 0.030" ± 0.002"; COPPER: 1/2 02. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED. 2.BOITOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE. DENOTES FOB COPPER LAYOUT WITH SMOBC (SOLDER MASK OVER BARE COPPER)

DENOTES COPPER LAND PATTERN FREE OF SOLDER MASK

Features

- low conversion loss, 6.0 dB typ.
- high L-R & L-I isolation, 50 dB typ.
- rugged welded construction

Applications

• VHF/UHF

defense & federal communications

Generic photo used for illustration purposes only CASE STYLE: NNN150

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Electrical Specifications

	FREQU (MI	JENCY Hz)	CONVERSION LOSS (dB)			LO-RF ISOLATION (dB)					LO-IF ISOLATION (dB)					IP3 @ CENTER BAND (dBm)			
	LO/RF	IF	x	/lid-Bar m σ	nd Max.	Total Range Max	l Tvp.	- Min.	N Tvp.	M Min.	l Tvp.	J Min.	I Tvp.	- Min.	N Tvp.	/I Min.	L Tvp.	J Min.	Τνρ.
						max				0									,,
	2-600	DC-600	6.0	0.17	7.0	8.0	70	50	50	30	42	25	65	45	50	30	41	22	17
1 dB COMP.: +5 dBm tvp.							L = 1	ow rar	nae (f.	to 10	f. 1	M = m	nid ran	ae [10	f. to f	/21	U = 1	loper	range [f./2 to f.]

m= mid band [2f, to f,/2]

Typical Performance Data

uency Hz)	Conversion Loss (dB)	Isolation L-R (dB)	Isolation L-I (dB)	VSWR RF Port (:1)	VSWR LO Port (:1)	
LO	LO +10dBm	LO +10dBm	LO +10dBm	LO +10dBm	LO +10dBm	
32.00 34.00 35.00 40.00 50.00 80.00 89.87 70.00 87.74 145.61	6.28 5.95 5.89 5.80 5.82 5.82 5.78 5.78 5.77 5.79 5.60	67.01 65.93 65.47 63.93 61.72 56.12 54.83 51.13 50.12 47.32	84.01 80.03 78.57 73.13 68.22 60.69 59.50 55.91 55.10 52.30	1.47 1.27 1.23 1.14 1.12 1.11 1.11 1.12 1.15 1.18	2.80 2.68 2.65 2.48 2.53 2.47 2.35 2.37 2.32 2.32 2.32	
143.81 170.00 203.48 261.36 270.00 319.23 337.10 434.97 492.84 550.71 570.00	5.69 5.73 5.70 5.69 5.68 5.71 5.70 5.72 5.72 5.77 5.84 5.87	47.52 46.57 45.24 43.94 43.65 42.63 41.85 40.61 39.23 38.82 38.82	52.30 51.26 49.36 46.68 46.00 43.46 41.86 39.52 37.60 36.92 36.44	1.16 1.21 1.25 1.27 1.31 1.35 1.40 1.45 1.49 1.51 1.53	2.20 2.33 2.27 2.24 2.29 2.28 2.28 2.29 2.33 2.33 2.33	
	LO 32.00 34.00 35.00 40.00 50.00 80.00 89.87 70.00 87.74 145.61 170.00 203.48 261.36 270.00 319.23 337.10 434.97 492.84 550.71 570.00	Lency Hz) Conversion Loss (dB) LO LO LO +10dBm 32.00 6.28 34.00 5.95 35.00 5.89 40.00 5.80 50.00 5.82 80.00 5.82 89.87 5.78 70.00 5.77 87.74 5.79 145.61 5.69 170.00 5.73 203.48 5.70 261.36 5.69 270.00 5.68 319.23 5.71 337.10 5.70 434.97 5.72 492.84 5.77 550.71 5.84 570.00 5.87	$\begin{array}{c c} \mbox{uency}\\ \mbox{Hz} , \mbox{Hz} , \mbo$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Electrical Schematic

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Nini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"), Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

M102713 TUF-1LHSM+ DJ/TD/CP/AM 201120 Page 1 of 2

Performance Charts

TUF-1LHSM+

Notes

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance oriteria and measurement instructions.
C. The parts covered by this specification document are entitled to be excluded and benefits contained in the specification and real material and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits