The Big Deal

- USB and $\mathrm{I}^{2} \mathrm{C}$ power \& control
- High speed switch transition, 200 ns
- High power handling (+30 dBm)
- Very High Isolation (80 dB)
- Small case ($3.75^{\prime \prime} \times 2.50^{\prime \prime} \times 0.6^{\prime \prime}$)

Typical Applications

- High volume production testing / ATE
- Design verification testing
- RF signal routing / switch matrices

Product Overview

Mini-Circuits' U2C-1SP4T-63H is a low cost, absorptive SP4T switch with USB and I ${ }^{2} \mathrm{C}$ control. The fast switching, solid state switch operates from 2 MHz to 6000 MHz with 200 ns typical switch transition speed. High linearity (+55 dBm typ IP3), and high isolation (80 dB typical) allow the model to be used for a wide variety of RF applications.
Full software support is provided for USB control, including our user-friendly GUI application for Windows and a full API with programming instructions for USB and $I^{2} \mathrm{C}$ control in both Windows and Linux environments (32-bit and 64-bit systems). The latest version of the full software package can be downloaded from https://www.minicircuits.com/softwaredownload/ solidstate.html at any time.

The U2C-1SP4T-63H is housed in a compact, rugged metal case (3.75 " $\times 2.50$ " $\times 0.6$ ") with 5 SMA (F) connectors (COM, and J1 to J4), a USB Mini-B and a 9-pin D-sub connector for USB and $I^{2} \mathrm{C}$ control and power.

Key Features

Feature	Advantages
Dual control interface (I2 I \& USB)	USB provides a quick and easy PC control method with full software support, while I2C allows multiple switches to be controlled in parallel from a microcontroller / embedded system using minimal hardware (2 wire control)
RF SP4T absorptive switch	Wideband (2 to 6000 MHz) with low insertion loss (3.7 dB typ.), high isolation (80 dB typ.), and high power rating (+30 dBm through path).
High Linearity (IP3 +55 dBm typ.)	Results in little or negligible inter-modulation generation, meeting requirements for digital communications signals
DC Blocking at RF ports	Built in blocking capacitors eliminate the need for external DC blocking circuitry at RF ports.

[^0]
Electrical Specifications @ 0 to $50^{\circ} \mathrm{C}$

Parameter	Port	Conditions	Min.	Typ.	Max.	Units
Operating Frequency			2		6000	MHz
Insertion Loss	COM to any active port	2 to 700 MHz	-	2.3	3.5	dB
		700 to 2500 MHz	-	3.0	4.5	
		2500 to 5000 MHz	-	3.8	5.5	
		5000 to 6000 MHz	-	4.2	6.0	
Isolation	Between any of ports J1 to J4	2 to 700 MHz	82	105	-	dB
		700 to 2500 MHz	72	90	-	
		2500 to 5000 MHz	53	73	-	
		5000 to 6000 MHz	49	62	-	
	COM to any terminated port	2 to 700 MHz	82	105	-	
		700 to 2500 MHz	77	95	-	
		2500 to 5000 MHz	58	76	-	
		5000 to 6000 MHz	54	64	-	
	Disconnected state (COM port open) ${ }^{1}$: COM to J2, J3, or J4	2 to 700 MHz	82	105	-	
		700 to 2500 MHz	77	95	-	
		2500 to 5000 MHz	58	76	-	
		5000 to 6000 MHz	54	64	-	
	Disconnected state (COM port open) ${ }^{1}$: COM to J1	2 to 700 MHz	42	60	-	
		700 to 2500 MHz	30	44	-	
		2500 to 5000 MHz	25	34	-	
		5000 to 6000 MHz	25	32	-	
VSWR	COM port in all active states ${ }^{1}$	2 to 700 MHz	-	1.40	-	:1
		700 to 2500 MHz	-	1.25	-	
		2500 to 5000 MHz	-	1.25	-	
		5000 to 6000 MHz	-	1.30	-	
	Any port connected to COM	2 to 700 MHz	-	1.40	-	
		700 to 2500 MHz	-	1.25	-	
		2500 to 5000 MHz	-	1.25	-	
		5000 to 6000 MHz	-	1.30	-	
	Any terminated port	2 to 700 MHz	-	1.15	-	
		700 to 2500 MHz	-	1.15	-	
		2500 to 5000 MHz	-	1.20	-	
		5000 to 6000 MHz	-	1.35	-	
Power Input @1 dB Compression 2,3,4	COM to any active port	100 to 6000 MHz	-	+35	-	dBm
IP3 ${ }^{\text {2,4,5 }}$	COM to any active port	100 to 6000 MHz	-	+55	-	dBm
Transition Time ${ }^{6}$	-	-	-	200	300	ns
Minimum dwell time ${ }^{7}$	High Speed Mode	-	-	5	-	$\mu \mathrm{s}$
Switching Time (USB) ${ }^{8}$	-	-	-	2	-	ms
Supply voltage (Vcc)	USB or D-Sub port	-	4.75	5	5.25	V_{DC}
Supply Current (Icc)	USB or D-Sub port	-	-	30	50	mA
Operating RF Input Power ${ }^{3}$	COM to any active port	Hot \& Cold Switching	-	-	+30	dBm
	Any active port to COM	Hot \& Cold Switching	-	-	+23	
	Any terminated port	-	-	-	+23	
	Through path	2 to 50 MHz	Max power at through path derates linearly from $+30 \mathrm{dBm} @ 50 \mathrm{MHz}$ to $+18 \mathrm{dBm} @ 2 \mathrm{MHz}$			
		50 to 6000 MHz	-	-	+30	

${ }^{1}$ When switch is at DISCONNECT state (see page 9) COM port will be in OPEN (reflective) state and all output ports (J1-J4) will be absorptive, however J1 port isolation is affected under this configuration, while $\mathrm{J} 2, \mathrm{~J} 3, \mathrm{~J} 4$ still maintain the same isolation as in the normal operating conditions.
${ }^{2}$ Do not exceed absolute maximum ratings in table on page 3
${ }^{3}$ Max power at through path derates linearly from $+30 \mathrm{dBm} @ 50 \mathrm{MHz}$ to $+18 \mathrm{dBm} @ 2 \mathrm{MHz}$
${ }^{4}$ Compression and IP3 may degrade below 100 MHz
${ }^{5}$ IP3 tested with 1 MHz span between signals, +5 dBm per tone.
${ }^{6}$ Transition time spec represents the time that the RF signal paths are interrupted during switching and thus is specified without communication delays.
${ }^{7}$ Minimum dwell time is the shortest time that can be achieved between 2 switch transitions when programming an automated switch sequence.
${ }^{8}$ Switching time(USB) is the time from issuing a single software command via USB to the switch state changing. The most significant factor is the host PC, influenced by CPU load and USB protocol. The time shown is an estimate for a medium CPU load and USB 2.0 connection.

Control voltages for $\mathrm{I}^{2} \mathrm{C}$ Control

Parameter		Min.	Typ.	Max.	Units
Control Input	Low	0	-	0.8	V
	High	2.0	-	3.3	

Connections

RF Switch (J1 to J4, COM)	(SMA female)
USB	(USB type Mini-B receptacle)
$\mathrm{I}^{2} \mathrm{C}^{\star}$	(9 pin D-sub female)

Absolute Maximum Ratings

Operating Temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
DC supply voltage max. @ USB and pin 4 of D-sub	6 V
Voltage on $\mathrm{I}^{2} \mathrm{C}$ control pins (1 \& 2 in D-sub)	3.6 V
Voltage on address pins (6-8 in D-sub)	3.6 V
RF power @ 2-6000 MHz into termination	+24 dBm
RF power @ 2-50 MHz into COM or active port	Derate linearly from $+35 \mathrm{dBm} @$ 50 MHz to $+20 \mathrm{dBm} \mathrm{@2} \mathrm{MHz}$
RF power @ $50-6000 \mathrm{MHz}$ into COM or active port	+35 dBm
DC voltage @ RF Ports	16 V

Permanent damage may occur if any of these limits are exceeded. Operating in the range between operating power limits and absolute maximum ratings for extended periods of time may result in reduced life and reliability.
*9 Pin D-Sub Pin Connections

PIN Number	Function
1	SDA
2	SCL
3	GND
4	Vcc
5	GND
6	A0
7	A1
8	A2
9	GND

Block Diagram

$I^{2} \mathrm{C}$ communication parameters

Parameter	Conditions		Min.	Typ.	Max.	Units
	Logic Low Voltage	Input	0	-	0.8	
	Logic High Voltage	Input	2.0	-	2.3	
Clock Frequency	-		-	-	400	

The $\mathrm{I}^{2} \mathrm{C}$ is a short-range synchronous communication protocol for simple 2 -wire communication with slave devices using clock (SCL) and data (SDA) connections. The U2C-1SP4T-63VH interface also includes 3 address pins (A0, A1 and A2), allowing up to 8 switches to be controlled independently from a single master with shared SDA and SCL connections.

All $\mathrm{I}^{2} \mathrm{C}$ pins in the U2C-1SP4T-63VH are connected to an internal pullup resistor so will float to logic 1 when disconnected. This sets a default address of 111 for all units (decimal 7). Addresses from 0 to 7 can be set by externally grounding the relevant address pins (A0, A1 and A2).

The $\mathrm{I}^{2} \mathrm{C}$ functionality is limited to setting or reading switch states. Control sequences are sent to the switch in several bytes on the data connection, enclosed by a start and stop signal, and clocked at up to 400 kHz . The switch will acknowledge each byte received with a single "ACK" bit (logic 1) on the same data connection.

To send a command to the switch 3 bytes will be sent:

1. Control byte ($\mathbf{1 0 1 0}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0} \mathrm{R} / \mathrm{W}$)

Where:
1010 = Control code for U2C-1SP4T-63VH
$\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=3$-bit address for the U2C-1SP4T-63VH switch module
$\mathrm{R} / \mathrm{W}=$ Read / write select bit (' 0 ' to write or ' 1 ' to read)
Example:
Control byte $=10101000$
Address $=100$ (binary) $=4$ (decimal)
R/W $=0$ (write to switch)
2. Switch selector byte (00000001) - U2C-1SP4T-63VH contains only 1 switch so this byte is always 00000001.
3. Switch state byte (00000 XYZ) - The switch state, represented by a binary string according to the truth table below.

Switch state	Switch state byte	Port behavior				
		COM	J1	J2	J3	J4
Disconnected	00000000	Reflective	Terminated Internally (50)	Terminated Internally (50)	Terminated Internally (50)	Terminated Internally (50)
COM -> 1	00000001	Connected to J1	Connected to COM	Terminated Internally (50ת)	Terminated Internally (50)	Terminated Internally (50)
COM -> 2	00000010	Connected to J2	Terminated Internally (50)	Connected to COM	Terminated Internally (50)	Terminated Internally (50)
COM -> 3	00000011	Connected to J3	Terminated Internally (50)	Terminated Internally (50)	Connected to COM	Terminated Internally (50)
COM -> 4	00000100	Connected to J4	Terminated Internally (50)	Terminated Internally (50)	Terminated Internally (50)	Connected to COM

In $I^{2} \mathrm{C}$ protocol the Data line may not change states while the Clock is high, except for the start and stop signals which enclose each sequence of bytes. While the Clock is high a falling edge (transition from logic 1 to logic 0) signifies the start of a sequence, while a rising edge (transition from logic 0 to logic 1) signifies a stop signal. All other transitions must occur while the clock is low.

Setting switch state via $I^{2} C$

The I2C communication sequence to set the switch state is:

1. Start signal
2. Send control byte (write mode)
3. Receive ACK response from switch
4. Send switch selector byte
5. Receive ACK response from switch
6. Send switch state byte
7. Receive ACK response from switch
8. Stop signal

Legend:

Signal from master to switch
Signal from switch to master

Reading switch state via $\mathrm{I}^{2} \mathrm{C}$

The I2C communication sequence to set the switch state is:

1. Start signal
2. Send control byte (write mode)
3. Receive ACK response from switch
4. Send switch selector byte
5. Receive ACK response from switch
6. Stop signal
7. Start signal
8. Send control byte (read mode)
9. Receive ACK response from switch
10. Receive current switch state
11. Stop signal

Legend:

Signal from master to switch
Signal from switch to master

Outline Drawing (RB2502)

Outline Dimensions (inch)

A	B	C	D	E	F	G	H	J	K	L	WT. GRAMS
3.75	2.50	$\mathbf{0 . 6 0}$	$\mathbf{0 . 9 1 5}$	$\mathbf{0 . 6 4 0}$	$\mathbf{0 . 3 0 0}$	$\mathbf{0 . 1 0}$	3.55	$\mathbf{1 . 5 0}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 1 0 6}$	$\mathbf{2 2 0}$
95.25	63.50	15.24	23.24	16.26	7.62	2.54	90.17	38.10	12.70	2.69	

Typical Performance Curves

Insertion Loss J1 Active (over Temp.)

Isolation COM to J1 (J2 Active)

Isolation J2 to J3 (J3 Active)

Insertion Loss J1/2/3/4 Active

Isolation COM to J1 (J3 Active)

Isolation J1 to J3 (J2 Active)

Typical Performance Curves (Continued)

VSWR @ J1 Active Port over Temp.

VSWR @ J1 Terminated over Temp.

VSWR @ COM (J1/2/3/4 Active)

VSWR @ Active Ports J1/2/3/4

VSWR J1/2/3/4 Terminated Ports

Software \& Documentation Download:

- Mini-Circuits' full software and support package including user guide, Windows GUI, DLL files, programming manual and examples can be downloaded free of charge from https://www.minicircuits.com/softwaredownload/solidstate.html
- Please contact testsolutions@minicircuits.com for support

Minimum System Requirements

Parameter	Requirements	
Interface	USB HID or $\mathrm{I}^{2} \mathrm{C}$	
System requirements	GUI:	Windows 32 \& 64 bit systems from Windows 98 up to Windows 10
	USB API (ActiveX \& .Net)	Windows 32 \& 64 bit systems with ActiveX or . Net support from Windows 98 up to Windows 10
	$1^{2} \mathrm{C}$	Any computer with a suitable I/O port
	USB direct programming support	Linux, Windows systems from Windows 98 up to Windows 10
Hardware	Pentium ${ }^{\circledR}$ II or higher, RAM 256 MB	

Graphical User Interface (GUI) for Windows

Key Features:

- Set switch manually
- Set timed sequence of switching states
- Configure switch address and upgrade Firmware

Application Programming Interface (API)

Windows Support:

- API DLL files exposing the full switch functionality
- ActiveX COM DLL file for creation of 32-bit programs
- .Net library DLL file for creation of 32 / 64-bit programs
- Supported by most common programming environments (refer to application note AN-49-001 for summary of tested environments)

Linux Support:

- Full switch control in a Linux environment is achieved by way of USB interrupt commands.

Recommended Accessories

U2C-1SP4T-63H includes a standard 9 pin D-Sub connector for I2C control applications. An optional shielded control cable is available for implementing custom cable harnesses. D-SUB9-MPT-3+ has a D-Sub connector for mating to U2C-1SP4T-63H and bare wires (pig tail) on the other end. The cable is 36 inches (0.9 meter) long using 28 AWG wires

Control Cable D-SUB9-MPT-3+

Pin Number	Function	Description	Pigtail Wire Color
1	SDA	$1^{2} \mathrm{C}$ Data	BLACK
2	SCL	$1^{2} \mathrm{C}$ Clock	BROWN
3	GND	Ground connection	RED
4	VCC	Supply Voltage	ORANGE
5	GND	Ground connection	YELLOW
6	A0	Address bit 0 (LSB)	GREEN
7	A1	Address bit 1	BLUE
8	A2	Address bit 2 (MSB)	PURPLE
9	GND	Ground connection	WHITE

Ordering, Pricing \& Availability Information see our web site

Model	Description
U2C-1SP4T-63H	USB \& ${ }^{2} \mathrm{C}$ C Single Pole Four Throw Switch

Included Accessories	Part No.	Description

Optional Accessories	Description
MUSB-CBL-3+ (Spare)	$2.6 \mathrm{ft}(0.8 \mathrm{~m})$ USB Cable: USB type A(Male) to USB type Mini-B(Male)
MUSB-CBL-7+	$6.6 \mathrm{ft}(2.0 \mathrm{~m})$ USB Cable: USB type A(Male) to USB type Mini-B(Male)
D-SUB9-MPT-3+	$3 \mathrm{ft} \mathrm{I2C} \mathrm{Cable:} 9$ pin D-sub(Male) to Pig-Tail (Bare wires)
USB-AC/DC-5+	AC/DC +5 V power adaptor with USB connector 9,10

9 The USB-AC/DC-5 may be used to provide additional power if needing to connect a number of switches in series exceeding 500 mA total current draw.
10 Includes power plugs for US, UK, EU, IL, AU \& China. Plugs for other countries are also available, if you need a power plug for a country not listed please contact testsolutions@minicircuits.com

Additional Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

[^0]: Trademarks: Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Pentium is a registered trademark of Intel Corporation. Neither Mini-Circuits nor the Mini-Circuits U2C-1SP4T-63H are affiliated with or endorsed by the owners of the above referenced trademarks

 Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

