Coaxial

Coaxial-Ceramic Resonator Filters and Multiplexers

 50Ω DC to 6 GHz

The Big Deal

- Low insertion loss with excellent power handling
- Passbands up to 6 GHz
- Fractional bandwidth from <1 to 25%
- Excellent temperature stability
- Rugged construction to handle demanding environmental conditions

Product Overview

Mini-Circuits' Coaxial-Ceramic Resonator filters offer low insertion loss in very small form factors, using ceramic material with high dielectric constant and superior Q factor. Bandpass and bandstop filters, diplexer and multiplexer designs can be constructed using this technology. Low insertion loss combined with excellent power handling makes these filters well suited for transmitter and receiver signal chains. Advanced filter design and construction can achieve stopband width greater than 3x the center frequency

All our coaxial-ceramic resonator filters are built with rugged construction. Excellent repeatability across units is achieved through precise tuning and process control.

Key Features

Feature	Advantages		
Low insertion loss	Low signal loss results in better SNR in signal chain		
Fast roll-off	Higher selectivity results in better adjacent channel rejection and dynamic range		
Wide stop band	Wide spur-free stopband results in better receiver sensitivity		
Excellent power handling	Well suited for transmitter applications		
Rugged Construction	These filter assemblies have been qualified over a wide range of thermal, mechanical and environmental conditions including withstanding the stress of extensive solder reflow cycles		
Small Size	Very well suited for high performance applications where size is a constraint.		
Temperature stability	Very minimal change in electrical performance across temperature makes these filters suitable a wide range of operating conditions.		

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

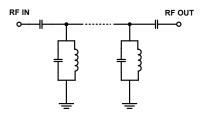
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Puchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Bandpass Filter

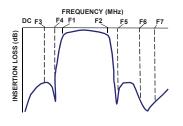
 50Ω 403 to 430 MHz

ZCBP6-416R5-S+

Generic photo used for illustration purposes only CASE STYLE: CC1764


Features

- · Low insertion loss, 1.1dB typ.
- High rejection, 70dB typ.
- · Connectorized package


Applications

- Public safety communication
- Medical radio communication service

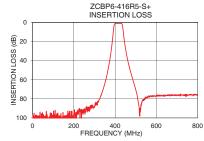
Functional Schematic

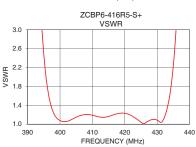
Typical Frequency Response

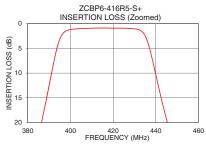
+RoHS Compliant

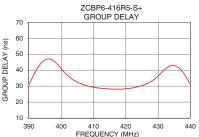
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Electrical Specifications at 25°C


Parameter		F#	Frequency (MHz)	Min.	Тур.	Max.	Unit
	Center Frequency	_	_	_	416.5	_	MHz
Pass Band	Insertion Loss	F1-F2	403 - 430	_	1.11	1.7	dB
	VSWR	F1-F2	403 - 430	_	1.23	1.67	:1
Stop Band, Lower	r Insertion Loss	DC-F3	DC - 320	65	80	_	dB
Stop Ballu, Lower		F3-F4	320 - 382	20	27	_	dB
Stop Band, Upper	Insertion Loss	F5-F6	451 - 520	20	28	_	dB
Stop Ballu, Opper		F6-F7	520 - 800	55	73		dB

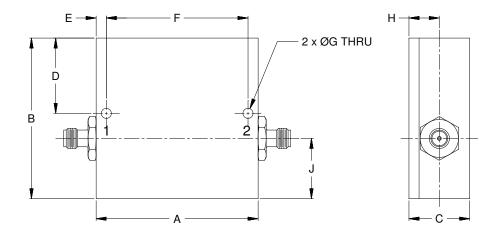

Maximum Ratings			
Operating Temperature	-40°C to 85°C		
Storage Temperature	-55°C to 100°C		
RF Power Input*	20W at 25°C		


Permanent damage may occur if any of these limits are exceeded.


Typical Performance Data at 25°C

Frequency (MHz)	Insertion Loss (dB)	VSWR (:1)	Frequency (MHz)	Group Delay (nSec)
0.5	113.14	10528.35	403.0	34.90
10.5	99.30	6363.29	404.0	33.55
100.5	106.80	1670.36	405.0	32.47
150.5	98.24	883.61	406.0	31.56
320.0	82.56	163.95	407.0	30.82
380.0	31.19	45.89	408.0	30.21
382.0	27.98	39.86	409.0	29.70
395.0	3.12	2.47	410.0	29.29
403.0	1.05	1.08	411.0	28.96
410.0	0.93	1.19	412.0	28.69
416.5	0.90	1.20	413.0	28.47
420.0	0.92	1.23	414.0	28.31
430.0	1.07	1.08	415.0	28.17
436.0	3.53	3.21	416.5	28.07
451.0	28.10	67.81	417.0	28.05
455.0	33.00	85.86	418.0	28.07
520.0	98.12	156.55	420.0	28.30
600.0	76.28	149.40	425.0	30.31
700.0	76.56	125.39	428.0	33.08
800.0	76.62	109.67	430.0	36.34

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.


B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.js

Coaxial Connections

PORT - 1	SMA-FEMALE		
PORT - 2	SMA-FEMALE		

Outline Drawing

Outline Dimensions (inch)

E	D	С	В	Α
.125	.938	.750	2.000	2.000
3.18	23.83	19.05	50.80	50.80
Wt.	J	Н	G	F
grams	.750	.375	.125	1.750
116	19.05	9.53	3.18	44.45

Note: Please refer to case style drawing for details

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms/jsp