50Ω Reflective RF switch 5 to $6000 \mathrm{MHz}, 4 \mathrm{~W}$
 Internal driver, Single Supply Voltage 2.3V to 4.8V

The Big Deal

- Wide band, 5 to 6000 MHz
- High power +36 dBm
- High linearity, IP3 +73 dBm @ 850 MHz
- Low loss, 1.1 dB up to 6 GHz

Applications

- Lab
- Instrumentation
- Automatic Test equipment (ATE)
- Defense

Product Overview

Mini-Circuits' ZSW2-63DR+ is a 50Ω high power SPDT RF switch designed for automatic test equipment applications, covering a broad frequency range from 5 to 6000 MHz with low insertion loss and high linearity.
The ZSW2-63DR+ operates on a single supply voltage from +2.3 V to +4.8 V with a single pin control. The switch comes housed in a rugged, compact, aluminum alloy case ($2.00 \times 1.5 \times 0.6$ ") with 3 SMA-F connectors at RF ports and a 9-pin D-sub connector for DC power and control signals.

Key Features

Feature	
Wideband, 5 to 6000 MHz	One model can be used in many applications, saving component count. Also ideal for wideband applications such as military and instrumentation.
High linearity, + 73 dBm IP3	High linearity minimizes unwanted inter-modulation products which are difficult or impossible to filter in multi-carrier environments, or in the presence of strong interfering signal from adjacent circuitry or received by antenna.
Low insertion loss: - 0.33 dB up to 1000 MHz -1.1 dB up to 6000 MHz	Provides excellent transmission of signal power from input to output and minimizes overall system loss
High power: +36 dBm up to 6000 MHz	Suitable for signal routing applications with high power requirement such as antenna feeds in transmit systems and more.

RF Electrical Specifications: $5-6000 \mathrm{MHz}, \mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+2.3 \mathrm{~V}$ to +4.8 V (unless noted otherwise)

Parameter	Port	Frequency	Min.	Typ.	Max.	Units
Operating Frequency	-	-	5	-	6000	MHz
Insertion Loss	RF COM to any active port	$\begin{gathered} 5-1000 \mathrm{MHz} \\ 1000-2500 \mathrm{MHz} \\ 2500-5000 \mathrm{MHz} \\ 5000-6000 \mathrm{MHz} \end{gathered}$	-	$\begin{gathered} \hline 0.33 \\ 0.6 \\ 0.9 \\ 1.1 \end{gathered}$	$\begin{aligned} & 0.7 \\ & 0.9 \\ & 1.4 \\ & 1.5 \end{aligned}$	dB
Isolation	between RF COM and RF1/RF2 ports	$\begin{gathered} 5-1000 \mathrm{MHz} \\ 1000-2500 \mathrm{MHz} \\ 2500-5000 \mathrm{MHz} \\ 5000-6000 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 39 \\ & 30 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 48 \\ & 37 \\ & 29 \\ & 24 \end{aligned}$	-	dB
	between RF1 and RF2 ports	$5-1000 \mathrm{MHz}$ $1000-2500 \mathrm{MHz}$ $2500-5000 \mathrm{MHz}$ $5000-6000 \mathrm{MHz}$	$\begin{aligned} & 40 \\ & 30 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 51 \\ & 40 \\ & 31 \\ & 26 \end{aligned}$	-	dB
VSWR	RF COM port	$\begin{gathered} 5-1000 \mathrm{MHz} \\ 1000-2500 \mathrm{MHz} \\ 2500-5000 \mathrm{MHz} \\ 5000-6000 \mathrm{MHz} \end{gathered}$	-	$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.35 \\ & 1.35 \end{aligned}$	-	:1
	RF1/RF2 ports	$\begin{gathered} 5-1000 \mathrm{MHz} \\ 1000-2500 \mathrm{MHz} \\ 2500-5000 \mathrm{MHz} \\ 5000-6000 \mathrm{MHz} \end{gathered}$	-	$\begin{aligned} & 1.15 \\ & 1.20 \\ & 1.30 \\ & 1.30 \end{aligned}$	-	:1
0.1 dB Compression point ${ }^{1}$	RF COM to any active port	100-6000	-	35	-	dBm
IP2 ${ }^{2}$	RF COM to any active port	$\begin{gathered} 850 \mathrm{MHz} \\ 1800 \mathrm{MHz} \\ 2500 \mathrm{MHz} \end{gathered}$	-	$\begin{aligned} & 115 \\ & 115 \\ & 115 \end{aligned}$	-	dBm
IP3 ${ }^{2}$	RF COM to any active port	$\begin{gathered} \hline 850 \mathrm{MHz} \\ 1800 \mathrm{MHz} \\ 2500 \mathrm{MHz} \\ \hline \end{gathered}$	-	$\begin{aligned} & \hline 73 \\ & 74 \\ & 75 \\ & \hline \end{aligned}$	-	dBm
Harmonics	-	$\begin{gathered} 850 \mathrm{MHz} \\ 1800 \mathrm{MHz} \\ 2500 \mathrm{MHz} \end{gathered}$	-	$\begin{aligned} & \hline-97 \\ & -97 \\ & -90 \\ & \hline \end{aligned}$	-	dBc
Operating RF input power ${ }^{3}$	Through path	$100-6000 \mathrm{MHz}$	-	-	+36	dBm

${ }^{1}$. 0.1 dB compression may degrade below 100 MHz to 31 dBm at 5 MHz .
2. IP3 and IP2 tested with +25 dBm per tone. span between tones 45 MHz @ $850 \mathrm{MHz}, 100 \mathrm{MHz} @ 1800$ \& 2500 MHz .
3. For Max Power below 100 MHz See power derating curves on page 3 .

DC Electrical Specifications

Parameter	Min.	Typ.	Max.	Units
Vod, Supply Voltage	2.3	-	4.8	V
Supply Current ${ }^{4}$	-	0.15	0.25	
Control Voltage Low	0	-	$0.2 x$ VDD (max 0.6V)	
Control Voltage High	$0.85 \times$ VDD	-	5.5	V
Control Current	-	40	-	$\mu \mathrm{A}$

4. Supply current may reach 3 mA at startup.

Switching Specifications

Parameter		Conditions	Min.	Typ.	Max.	Units
Switching time 50\% trigger to 10/90\% signal level	On time	$\begin{gathered} \text { Pulse rate }=125[\mathrm{kHz}], \\ \text { RF freq. }=501[\mathrm{MHz}] \end{gathered}$	-	1.6	-	$\mu \mathrm{s}$
	Off time		-	1.2	-	
Video feedthrough@ all ports		$\begin{gathered} \text { Vctrl }=0 / 3 \mathrm{~V}, \\ \text { Duty Cycle }=50 \% \end{gathered}$	-	0.3	-	mVpp

Absolute Maximum Ratings ${ }^{\mathbf{5 , 6}}$

Parameter	Ratings
Operating Temperature, case	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
VDD, Supply Voltage	-5 V Min. 5 V Max.
Control Voltage	-0.3 V Min. 5.5 V Max.
ESD, HBM	Class 1 B (Pass 500 V)
RF input power	See derating curves
DC voltage on RF pins	
5. Operation of this device above any of these conditions may cause	
permanent damage.	
6. Operation in the range between the max operating power and the absolute	
maximum rating for extended periods of time may result in reduced life	
and reliability.	

The RF switch control bit selects the desired switchstate, as shown in Table 1: Truth Table.

Table 1: Truth Table.

STATE	Control Input	RF Input / Output	
	Control V1	RF COM to RF2	RF COM to RF1
	Low	OFF	ON
2	High	ON	OFF

Simplified Diagram

Connections

RF1	(SMA female)
RF2	(SMA female)
RF COM	(SMA female)
DC Supply and Control	9 Pin D-Sub female*

*9 Pin D-Sub
Pin Connections

PIN Number	Function
3	Vdd
4	Not Connected
5	V1
$1-2,6-9$	GND 8

. Only one of the GND pins is required to be connected for proper operation.

Outline Drawing (QV2426)

BOTTOM VIEW

Outline Dimensions ($\left.\begin{array}{c}\text { inch } \\ \mathrm{mm}\end{array}\right)$

A	B	C	D	E	F	G	H	J	K	L	M	N	WT. GRAMS
2.00	1.50	.60	.31	1.760	.120	1.260	.200	.125	.40	2.30	1.600	.100	70
50.8	38.1	15.24	7.87	44.7	3.05	32.0	5.08	3.18	10.16	58.4	40.64	2.54	

SPDT RF SWITCH

Typical Performance Curves (Continued)

Insertion Loss RF1 Active (over Temp.)

Insertion Loss RF1/2 Active

Typical Performance Curves
VSWR RF COM over Temperature

VSWR @ RF1 Active Port over Temp

VSWR @ RF COM (RF1/2)

Additional Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

