The Big Deal

-High isolation, 57 dB up to 2.7 GHz
-High linearity, IP3 +58 dBm at 1900 MHz
-High speed switching (320 ns)
-High power handling (+33 dBm)
-Low DC Voltage 2.3 to 3.6 V

Applications

- 3G/4G wireless infrastructure
- Automated Test equipment
- Switch matrices
- Defense

RoHS Compliant

See our web site for RoHS Compliance methodologies and qualifications

Product Overview

Mini-Circuits' ZSWA4-63DR+ is an SP4T absorptive, solid-state switch with an internal driver, designed for wideband operation from 1 MHz to 6 GHz supporting many applications requiring high performance from 3G/4G infrastructure to automated test equipment and various defense applications. The switch provides excellent isolation, fast switching speed and high linearity. It operates on a single 2.3 to 3.6 V supply.

The switch comes housed in a rugged, compact, aluminum alloy case ($2.00 \times 1.5 \times 0.6^{\prime \prime}$) with 5 SMA-F connectors at all RF ports and a 9-pin D-sub connector for DC power and control signals.

Key Features

Feature	Advantages
Wideband, 1 to 6000 MHz	One model can be used in many applications, saving component count. Also ideal for wideband applications such as military and instrumentation.
Absorptive switch	In the off condition, RF output ports which are not switched ON are terminated into 50Ω. This enables proper impedance termination of the circuitry following the RF output ports, preventing any unintended action such as oscillation.
High isolation, 58 dB @ 2700 MHz	High isolation significantly reduces leakage of power into OFF ports.
High linearity, +58 dBm IIP3 +97 dBm IIP2	High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multi-carrier environments, or in the presence of strong interfering signal from adjacent circuitry or received by antenna.
Two or three pin control logic	Provides increased flexibility, allowing the model to be operated using two pin control, or three pin control if All Off state is required (RF COM not connected to any port).
Low operating power - 2.3 to 3.6 V - 0.1 mA typ.	Allows the switch to be used in battery-operated systems

Electrical Specifications @ $\mathbf{+ 2 5}^{\circ} \mathrm{C}$, $\mathrm{Vdd}=\mathbf{3 . 3 V}$ unless specified otherwise

Parameter	Port		Conditions	Min.	Typ.	Max.	Units
Operating Frequency				1		6000	MHz
Insertion Loss	RF COM to any active port		$1-2700 \mathrm{MHz}$	-	1.3	2	dB
			$2700-5000 \mathrm{MHz}$	-	1.7	2.4	
			$5000-6000 \mathrm{MHz}$	-	2.2	3	
Isolation ${ }^{1}$	Between ports RF1,RF2,RF3, and RF4 @ All states		$1-1000 \mathrm{MHz}$	51	73	-	dB
			$1000-2700 \mathrm{MHz}$	43	57	-	
			2700-4000 MHz	37	48	-	
			$4000-6000 \mathrm{MHz}$	26	36	-	
	RF COM to any terminated port @ All states		$1-1000 \mathrm{MHz}$	55	80	-	
			$1000-2700 \mathrm{MHz}$	44	58	-	
			2700-4000 MHz	37	45	-	
	RF COM to any terminated port	@ Active states	$4000-6000 \mathrm{MHz}$	27	36	-	
		@ All Off state	4000-6000 MHz	24	35	-	
VSWR	RF COM port ${ }^{2,3}$		$1-4000 \mathrm{MHz}$	-	1.25	-	:1
			$4000-6000 \mathrm{MHz}$	-	1.3	-	
	Any port connected to RF COM		$1-4000 \mathrm{MHz}$	-	1.25	-	
			$4000-6000 \mathrm{MHz}$	-	1.3	-	
	Any terminated port ${ }^{3}$		1 to 6000 MHz	-	1.25	-	
Power Input @ 0.1 dB Compression ${ }^{4}$	RF COM to any active port		900 MHz	-	+35	-	dBm
IP2 ${ }^{5}$	RF COM to any active port		1900 MHz	+97			dBm
IP3 ${ }^{5}$	RF COM to any active port		1900 MHz	-	+58	-	dBm
Operating RF Input Power @ -40° to $+85^{\circ}$	Any terminated (OFF) port ${ }^{3}$		$1-30 \mathrm{MHz}$	-	-	See figure 1	dBm
			$30-6000 \mathrm{MHz}$			+24	
	RF COM @ All Off state		$1-30 \mathrm{MHz}$	-	-	See figure 1	
			$30-6000 \mathrm{MHz}$			+24	
	Through path		$1-30 \mathrm{MHz}$	-	-	See figure 1	
			$30-6000 \mathrm{MHz}$			+33	

${ }^{1}$ See truth table on page 3 for list of states.
${ }^{2}$ VSWR defined for RF COM only at active state.
${ }^{3}$ RF COM port is not terminated internally in All Off state.
${ }^{4}$ Note absolute maximum ratings in table on page 3.
${ }^{5}$ IP2 and IP3 are tested with +15 dBm per tone.

DC Electrical Specifications

Parameter	Min.	Typ.	Max.
Vdo, Supply Voltage	2.3	-	3.6
Supply Current ${ }^{6}$	-	0.1	0.4
Control Voltage Low	0	-	V
Control Voltage High	$0.8 \times \mathrm{VDD}$	$-2 \times 2 \mathrm{VDD}(\mathrm{max} 0.6 \mathrm{~V})$	
Control Current (per pin)	-	0.015	5.5

${ }^{6}$ Supply current may reach 3 mA at startup

Switching Parameters

Parameter	Conditions	Min.	Typ.	Max.	Units
Switching time 50% trigger to 10/90\% signal level	Pulse rate $=12.5 \mathrm{kHz}$, RF freq. $=501 \mathrm{MHz}$	-	320	400	ns
Video feedthrough @ all ports	Vctrl $=0 / 3 \mathrm{~V}$, Duty Cycle $=50 \%$	-	0.1	mVpp	
Non harmonic spur		-	-120	-	dBm
Switching frequency		-	-	12.5	kHz

Absolute Maximum Ratings ${ }^{7,8}$

Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Vdd, supply voltage.	-5 V to 3.6 V
Control voltage	-0.3 V to 5.5 V
RF input power $1-30 \mathrm{MHz}$	See Figure 1
RF input power $30-6000 \mathrm{MHz}$	+34 dBm
DC voltage @ RF Ports	8 V
ESD @ (HBM) D-SUB pins	1.5 kV
ESD @ (HBM) RF ports	4 kV

7. Operation of this device above any of these conditions may cause permanent damage.
8. Operation in the range between the max operating power and the absolute maximum rating for extended periods of time may result in reduced life and reliability.

Truth Table ${ }^{9,10}$

State	V3	V2	V1	RF COM-RF1	RF COM-RF2	RF COM-RF3	RF COM-RF4
1	Low	Low	Low	OFF	OFF	OFF	ON
2	Low	Low	High	ON	OFF	OFF	
3	Low	High	Low	OFF	ON	OFF	OFF
4	Low	High	High	OFF	OFF	OFF	
5	High	Low	Low	OFF	OFF	OFF	OFF
6	High	Low	High		All Off (disconnected state)		
7	High	High	Low		All Off (disconnected state)		
8	High	High	High	Unsupported			

9. All controls have internal $100 \mathrm{k} \Omega$ pull down resistor.
10. For two pin logic use V1 \& V2 with V3 either open or GND.

Simplified Schematic

Maximum Power at low frequency

Figure 1

Outline Drawing (QV2425)

Outline Dimensions ($\left.\begin{array}{c}\text { inch } \\ \mathrm{mm}\end{array}\right)$

A	B	C	D	E	F	G	H	J	K	L	M	N	P	WT. GRAMS
$\mathbf{2 . 0 0}$	$\mathbf{1 . 5 0}$.60	.500	.31	1.760	.120	1.260	.200	.125	.40	$\mathbf{2 . 3 0}$	$\mathbf{1 . 6 0 0}$.100	70
50.8	38.1	15.24	12.7	7.87	44.7	3.05	32.0	5.08	3.18	10.16	58.4	40.64	2.54	

Connections

RF ports (RF1, RF2, RF3, RF4, RF COM)	(SMA female)
Supply \& control port ${ }^{\star}$	(9 pin D-Sub female)

*9 Pin D-Sub Pin Connections

PIN Number	Function
1	NC
2	V3
3	V2
4	V1
5	Vdd
$6-9$	GND 11

11. Only one of the GND pins is required for proper operation

Typical Performance Curves

Isolation RF Com to RF1 with RF4 active

Isolation RF COM to RF4 at All Off State

Insertion Loss at RF1- RF4 vs. Frequency

Isolation RF Com to RF4 with RF3 active

Isolation at All Off State

Typical Performance Curves (Continued)

Isolation RF2 to RF3 with RF4 active

VSWR RF Com over Temperature

Isolation RF1 to RF4 with RF1 active

Isolation RF2 to RF4 with RF1 active

VSWR RF Com vs Frequency

Typical Performance Curves (Continued)

VSWR internal Term. over Temperature

VSWR terminated port vs. Frequency

