

Rear Panel (COM Ports of each SPDT Switch)

Each USB-1SP2T-63VHX module (24 total) will be controlled as a single SPDT switch with 3 states:

State	Summary
$\mathbf{0}$	All ports (COM, J1 \& J2) terminated internally
$\mathbf{1}$	COM connected to $\mathrm{J} 1 ; \mathrm{J} 2$ terminated internally
$\mathbf{2}$	COM connected to J ; J 1 terminated internally

RF Component List:

ID	Quantity	Model Name	Requirement
SW1-SW24	24	USB-1SP2T-63VHX	High Isolation / Power Solid-State SPDT

Daisy-Chained Control Connection

Multiple ZT-24SP2T-63VH racks (each with $24 \times$ SPDT) can be daisy-chained together via their respective SPI Out \& SPI In ports. Control for the full chain will be achieved via the single USB or Ethernet connection to the Master unit.

Mechanical Specifications: Outline Drawing 99-01-2580

Dimensions	19" (W) x 4U max (H) x 20" (D)
Case Material	Aluminum (with protective coatings to prevent corrosion)
Support	Rack-mounted slide rails; similar to ZT-20X6NB. See photo
RF Connectors	N-type (female)
Front Panel Marking	Line 1: Mini-Circuits part number Line 2: $24 \times$ SPDT Switch Rack
Front panel	a) ON/OFF switch with indicator light b) Carry handles c) $48 \times$ RF connections (RF1 and RF2 of each switch) - N-type female
Rear panel	a) $24 \times$ RF connections (COM of each switch) - N-type female b) AC mains power supply input c) USB \& RJ45 control connections d) Label with date code/serial number/MCL part\# for traceability
Power supply	AC mains power supply ($90-260 \mathrm{~V}, 47-63 \mathrm{~Hz}$)
Control Interface	USB and Ethernet TCP/IP supporting HTTP and TELNET protocols
Software support	a) Mini-Circuits GUI for manual testing (Windows) b) ASCII / SCPI commands for automation through Ethernet c) ActiveX/.NET DLLs for USB automation in a Windows environment d) Interrupt codes for USB automation in a Linux environment
Operating temp	0° to $+50^{\circ} \mathrm{C}$

Electrical Specifications per Switch @ +25 ${ }^{\circ} \mathrm{C}$:

Parameter	Condition	Min	Typ	Max	Unit
Frequency		600		6000	MHz
Path Loss (COM to any J Port)	$600-2500 \mathrm{MHz}$		4.0	5.5	
	$2500-5000 \mathrm{MHz}$		4.5	6.0	dB
	$5000-6000 \mathrm{MHz}$		5.0	6.5	
Isolation (Between J Ports)	$600-2500 \mathrm{MHz}$	100	110		dB
	$2500-5000 \mathrm{MHz}$	100	105		
	$5000-6000 \mathrm{MHz}$	100	103		
Return Loss (All Ports)	$600-6000 \mathrm{MHz}$		17.69		dB
Input Power (Through Path)	COM Port			2	W
	Per Port (J1 and J2)			2	W
Total Power Dissipation				4	W

Electrical Performance per Switch $@+25^{\circ} \mathrm{C}$:

