

Test Solutions - Programming Manual

Modular Test Systems

ZTM Series Rack-Mount Modular Test Systems
RCM Series Compact Modular Test Systems

www.minicircuits.com | PO Box 350166, Brooklyn, NY 11235-0003 | +1 718-934-4500 | sales@minicircuits.com

Important Notice

This guide is owned by Mini-Circuits and is protected by copyright, trademark and other intellectual
property laws.

The information in this guide is provided by Mini-Circuits as an accommodation to our customers and
may be used only to promote and accompany the purchase of Mini-Circuits’ Parts. This guide may
not be reproduced, modified, distributed, published, stored in an electronic database, or transmitted
and the information contained herein may not be exploited in any form or by any means, electronic,
mechanical recording or otherwise, without prior written permission from Mini-Circuits.

This guide is subject to change, qualifications, variations, adjustments or modifications without
notice and may contain errors, omissions, inaccuracies, mistakes or deficiencies. Mini-Circuits
assumes no responsibility for, and will have no liability on account of, any of the foregoing.
Accordingly, this guide should be used as a guideline only.

Trademarks

Microsoft, Windows, Visual Basic, Visual C# and Visual C++ are registered trademarks of Microsoft
Corporation. LabVIEW and CVI are registered trademarks of National Instruments Corporation.
Delphi is a registered trademark of Delphi Technologies, Inc. MATLAB is a registered trademark of
The MathWorks, Inc. Agilent VEE is a registered trademark of Agilent Technologies, Inc. Linux is a
registered trademark of Linus Torvalds. Mac is a registered trademark of Apple Inc. Python is a
registered trademark of Python Software Foundation Corporation.

All other trademarks cited within this guide are the property of their respective owners. Neither
Mini-Circuits nor the Mini-Circuits PTE (portable test equipment) series are affiliated with or
endorsed or sponsored by the owners of the above referenced trademarks.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components
Corporation.

Mini-Circuits
13 Neptune Avenue
Brooklyn, NY 11235, USA
Phone: +1-718-934-4500
Email: sales@minicircuits.com
Web: www.minicircuits.com

mailto:sales@minicircuits.com
http://www.minicircuits.com/

Test Solutions - Programming Manual Page 3
Modular Test Systems 19-Oct-17 (A9)

1 - Overview ... 6

2 - Programming with Mini-Circuits' Modular Test Systems 7

2.1 - Control Options ... 7

2.2 - Addressing Individual Test Components ... 7

2.3 - Example ZTM Series Configuration ... 8

2.4 - Example RCM-100 Series Configuration ... 9

2.5 - Example RCM-200 Series Configuration ... 10

3 - SCPI Commands for Control of Modular Test Components 11

3.1 - ZTM Series System Operations ... 12
3.1 (a) - Get Model Name ... 13
3.1 (b) - Get Serial Number ... 14
3.1 (c) - Get Configuration .. 15
3.1 (d) - Get Firmware .. 17
3.1 (e) - Get Internal Temperature ... 18
3.1 (f) - Get Heat Alarm .. 19
3.1 (g) - Save Counters & States ... 20

3.2 - Programmable Attenuator Control .. 21
3.2 (a) - Set Attenuation ... 22
3.2 (b) - Get Attenuation .. 23
3.2 (c) - Set Start-Up Attenuation Mode .. 24
3.2 (d) - Get Start-Up Attenuation Mode ... 25
3.2 (e) - Set Start-Up Attenuation Value ... 26
3.2 (f) - Get Start-Up Attenuation Value ... 27
3.2 (g) - Get Maximum Attenuation ... 28

3.3 - SPDT Switch Control .. 29
3.3 (a) - Set SPDT Switch State .. 30
3.3 (b) - Get SPDT Switch State ... 31
3.3 (c) - Set All SPDT Switch States ... 32
3.3 (d) - Get All SPDT Switch States .. 34

3.4 - SP4T Switch Control ... 36
3.4 (a) - Set SP4T Switch State .. 37
3.4 (b) - Get SP4T Switch State ... 38
3.4 (c) - Set All SP4T Switch States .. 39
3.4 (d) - Get All SP4T Switch States ... 41

3.5 - SP6T Switch Control ... 43
3.5 (a) - Set SP6T Switch State .. 44
3.5 (b) - Get SP6T Switch State ... 45
3.5 (c) - Set All SP6T Switch States .. 46
3.5 (d) - Get All SP6T Switch States ... 48

3.6 - SP8T Switch Control ... 50
3.6 (a) - Set SP8T Switch State .. 51
3.6 (b) - Get SP8T Switch State ... 52
3.6 (c) - Set All SP8T Switch States .. 53
3.6 (d) - Get All SP8T Switch States ... 55

3.7 - Transfer Switch Control ... 57
3.7 (a) - Set Transfer Switch State .. 58
3.7 (b) - Get Transfer Switch State.. 59
3.7 (c) - Set All Transfer Switch States .. 60
3.7 (d) - Get All Transfer Switch States ... 62

Test Solutions - Programming Manual Page 4
Modular Test Systems 19-Oct-17 (A9)

3.8 - Switch Start-Up and Counter Properties ... 64
3.8 (a) - Set Switch Start-Up Mode ... 65
3.8 (b) - Get Switch Start-Up Mode .. 66
3.8 (c) - Get Switch Counter .. 67

3.9 - Component Labels ... 69
3.9 (a) - Set Component Label .. 69
3.9 (b) - Get Component Label ... 70

3.10 - SCPI - Ethernet Configuration Commands ... 71
3.10 (a) - Set Static IP Address .. 72
3.10 (b) - Get Static IP Address ... 73
3.10 (c) - Set Static Subnet Mask .. 74
3.10 (d) - Get Static Subnet Mask ... 75
3.10 (e) - Set Static Network Gateway .. 76
3.10 (f) - Get Static Network Gateway .. 77
3.10 (g) - Set HTTP Port ... 78
3.10 (h) - Get HTTP Port .. 79
3.10 (i) - Set Telnet Port .. 80
3.10 (j) - Get Telnet Port ... 81
3.10 (k) - Set Password Requirement ... 82
3.10 (l) - Get Password Requirement ... 83
3.10 (m) - Set Password .. 84
3.10 (n) - Get Password .. 85
3.10 (o) - Set DHCP Status .. 86
3.10 (p) - Get DHCP Status .. 87
3.10 (q) - Get MAC Address .. 88
3.10 (r) - Get Current Ethernet Configuration .. 89
3.10 (s) - Update Ethernet Settings .. 90

4 - Operating in a Windows Environment via USB ... 91

4.1 - The DLL (Dynamic Link Library) Concept ... 91
4.1 (a) - ActiveX COM Object .. 92
4.1 (b) - Microsoft.NET Class Library .. 94

4.2 - Referencing the DLL (Dynamic Linked Library) .. 95

4.3 - Summary of DLL Functions ... 96
4.3 (a) - USB Control Functions ... 96
4.3 (b) - Ethernet Configuration Functions ... 96

4.4 - DLL Functions for USB Control.. 97
4.4 (a) - Connect by Serial Number ... 97
4.4 (b) - Connect by Address... 98
4.4 (c) - Disconnect ... 99
4.4 (d) - Read Model Name ... 100
4.4 (e) - Read Serial Number ... 101
4.4 (f) - Set USB Address ... 102
4.4 (g) - Get USB Address .. 103
4.4 (h) - Get List of Connected Serial Numbers .. 104
4.4 (i) - Get List of Available Addresses .. 105
4.4 (j) - Get Software Connection Status .. 106
4.4 (k) - Get USB Connection Status ... 107
4.4 (l) - Send SCPI Command .. 108
4.4 (m) - Get Firmware ... 109
4.4 (n) - Get Firmware Version (Antiquated) .. 110

Test Solutions - Programming Manual Page 5
Modular Test Systems 19-Oct-17 (A9)

4.5 - DLL Functions for Ethernet Configuration .. 111
4.5 (a) - Get Ethernet Configuration ... 111
4.5 (b) - Get IP Address ... 113
4.5 (c) - Get MAC Address ... 115
4.5 (d) - Get Network Gateway ... 117
4.5 (e) - Get Subnet Mask ... 119
4.5 (f) - Get TCP/IP Port .. 121
4.5 (g) - Get DHCP Status .. 122
4.5 (h) - Get Password Status ... 123
4.5 (i) - Get Password .. 124
4.5 (j) - Save IP Address .. 125
4.5 (k) - Save Network Gateway ... 126
4.5 (l) - Save Subnet Mask .. 127
4.5 (m) - Save TCP/IP Port ... 128
4.5 (n) - Use DHCP... 129
4.5 (o) - Use Password .. 130
4.5 (p) - Set Password ... 131
4.5 (q) - Set Telnet Prompt ... 132
4.5 (r) - Get Telnet Prompt Status .. 133

5 - Operating in a Linux Environment via USB .. 134

5.1 - Summary of Commands .. 134

5.2 - Detailed Description of Commands ... 135
5.2 (a) - Get Device Model Name ... 135
5.2 (b) - Get Device Serial Number ... 136
5.2 (c) - Send SCPI Command .. 137
5.2 (d) - Get Firmware .. 140
5.2 (e) - Get Internal Temperature ... 141

6 - Ethernet Control over IP Networks ... 143

6.1 - Ethernet Communication .. 144
6.1 (a) - Sending SCPI Commands/Queries Using HTTP ... 144
6.1 (b) - Sending SCPI/Commands/Queries Using Telnet ... 145
6.1 (c) - Device Discovery Using UDP .. 146

7 - Program Examples & Tutorials ... 148

7.1 - Perl Programming ... 148
7.1 (a) - Ethernet HTTP Connection Using Perl's LWP Simple Interface 148
7.1 (b) - USB Connection Using the ActiveX DLL in 32-bit Perl Distributions 148
7.1 (c) - Work-Around for 64-bit Perl Distributions Using USB Connection 149

7.2 - C# Programming ... 150
7.2 (a) - Creating an Executable Using the .Net DLL in C# for USB Control 150

7.3 - LabVIEW ... 151
7.3 (a) - Creating a LabVIEW VI for USB Control with the ActiveX DLL 151

Test Solutions - Programming Manual Page 6
Modular Test Systems 19-Oct-17 (A9)

1 - Overview

This Programming Manual is intended for customers wishing to create their own interface for Mini-
Circuits' ZTM & RCM Series modular test systems. For instructions on using the supplied GUI
program, or connecting the hardware, please see the User Guide at:
http://www.minicircuits.com/support/software_download.html.

Mini-Circuits offers support over a variety of operating systems, programming environments and
third party applications.

Support for Windows® operating systems is provided through the Microsoft®.NET® and ActiveX®
frameworks to allow the user to develop customized control applications. Support for Linux®
operating systems is accomplished using the standard libhid and libusb libraries.

Mini-Circuits has experience with a wide variety of environments including (but not limited to):

 Visual Basic®, Visual C#®, Visual C++®

 Delphi®

 Borland C++®

 CVI®

 LabVIEW®

 MATLAB®

 Python®

 Agilent VEE®

The software package includes a GUI program, ActiveX and .NET DLL files, Linux support, project
examples for third party software, and detailed user manuals. The latest package is available for
download at:
http://www.minicircuits.com/support/software_download.html

For details on individual models, application notes, GUI installation instructions and user guides
please see:
http://www.minicircuits.com/products/PortableTestEquipment.shtml

Files made available for download from the Mini-Circuits website are subject to Mini-Circuits’ terms
of use which are available on the website.

http://www.minicircuits.com/support/software_download.html
http://www.minicircuits.com/support/software_download.html
http://www.minicircuits.com/products/PortableTestEquipment.shtml

Test Solutions - Programming Manual Page 7
Modular Test Systems 19-Oct-17 (A9)

2 - Programming with Mini-Circuits' Modular Test Systems

The ZTM & RCM Series modular concept is a flexible test system that can be easily configured to a
user’s requirements with combinations of high reliability mechanical switches and programmable
attenuators.

2.1 - Control Options

Communication with the system can be accomplished in a number of ways:

1. Using the provided ActiveX or .Net API objects (DLL files) on a Windows operating system
(see Operating in a Windows Environment via USB)

2. Using the USB interrupt codes on a Linux operating system (see Operating in a Linux
Environment via USB)

3. Using HTTP or Telnet communication over an Ethernet connection (see Ethernet Control over
IP Networks), which is largely independent of the operating system

In all cases the full functionality of the system and the constituent test components is accessible
using a command set based on SCPI (see SCPI Commands for Control of Modular Test Components).

2.2 - Addressing Individual Test Components

The system is logically arranged with a series of component windows on the front panel, 6 for the
ZTM Series (labelled 1 to 6) and 3 for the RCM Series (labelled 1 to 3). Each window can be specified
with the following components:

 1 or 2 high reliability, mechanical SPDT switches (DC-18GHz) in positions A and B

 1 or 2 high reliability, mechanical transfer switches (DC-18GHz) in positions A and B

 1 high reliability, mechanical SP4T switch (DC-18GHz)

 1 high reliability, mechanical SP6T switch (DC-12GHz)

 1 or 2 programmable attenuators:
o 0 to 120dB (0.25dB step size) covering 1MHz to 4GHz
o 0 to 30, 60, 90 or 110dB (0.25dB step size) covering 1MHz to 6GHz
o 0 to 30, 60 or 90dB (0.25dB step size) covering 1MHz to 8GHz

A special case exists for ZTM and RCM Series models housing SP8T switch components. The SP8T
components are larger than the standard window size so cannot be mixed with other components.
The ZTM Series can be specified with up to 4 SP8T switches and the RCM Series with up to 2 SP8T
switches.

Component Designator Number per Window (Windows 1 to 6)

SPDT Switch SPDT 1 or 2 (in locations A and B)

SP4T Switch SP4T 1 only

SP6T Switch SP6T 1 only

SP8T Switch SP8T 1 only (windows 1 to 4 only)

Transfer Switch MTS 1 or 2 (in locations A and B)

Programmable Attenuator RUDAT 1 or 2 (in locations A and B)
Table 1: ZTM / RCM Series Component Designators

Test Solutions - Programming Manual Page 8
Modular Test Systems 19-Oct-17 (A9)

Notes:
1. Where only 1 component is present in a window, for example where a single programmable

attenuator or SPDT switch is located in window 1, the “A” or “B” sub-location is not required
so the location can be addressed simply as window 1

2. If the “A” or “B” sub-location is omitted when there are 2 components in a given slot, the
hardware will default to controlling sub-location “A”

3. A full window is required for SP4T, SP6T and SP8T switches so the “A” and “B” sub-locations
do not apply; only the integer window number is needed

4. Transfer switches and SPDT switches accept the same command arguments so an “SPDT”
command addressed to an “MTS” location will still operate the switch (and vice versa)

2.3 - Example ZTM Series Configuration

Fig 1: Example ZTM Series Front Panel Configuration

The example front panel layout of figure 1 is arranged with two SP4T switches, four SPDT switches
and four programmable attenuators in the following locations:

ZTM Series
Window

Component

1 SP4T Switch

2A SPDT Switch

2B SPDT Switch

3 SP4T Switch

4A SPDT Switch

4B SPDT Switch

5A Programmable Attenuator

5B Programmable Attenuator

6A Programmable Attenuator

6B Programmable Attenuator

Table 2: Example ZTM Series Configuration with Component Window Locations

Test Solutions - Programming Manual Page 9
Modular Test Systems 19-Oct-17 (A9)

2.4 - Example RCM-100 Series Configuration

Fig 2: Example RCM-100 Series Configuration

The example front panel layout of figure 2 is arranged with six programmable attenuators in the
following locations:

RCM Series
Window

Component

1A 6GHz Programmable Attenuator (0 to 30 dB)

1B 6GHz Programmable Attenuator (0 to 30 dB)

2A 6GHz Programmable Attenuator (0 to 60 dB)

2B 6GHz Programmable Attenuator (0 to 60 dB)

3A 6GHz Programmable Attenuator (0 to 110 dB)

3B 6GHz Programmable Attenuator (0 to 110 dB)
Table 3: Example RCM-100 Series Configuration with Component Window Locations

Test Solutions - Programming Manual Page 10
Modular Test Systems 19-Oct-17 (A9)

2.5 - Example RCM-200 Series Configuration

Fig 3: Special Case of the RCM-200 Series, Specified with 2 x SP8T Switches (RCM-2SP8T-12)

The example front panel layout of figure 2 is arranged with six programmable attenuators in the
following locations:

RCM Series
Window

Component

1 SP8T Switch

2 SP8T Switch

Table 4: Example RCM-200 Series Configuration with Component Window Locations

Test Solutions - Programming Manual Page 11
Modular Test Systems 19-Oct-17 (A9)

3 - SCPI Commands for Control of Modular Test Components

The main method of communication with the ZTM & RCM Series modular test systems is
through a series of SCPI commands. SCPI (Standard Commands for Programmable
Instruments) is a common method for controlling instrumentation products.

The SCPI commands are sent as an ASCII text string (up to 63 characters) in the below
format:

:[designator]:[location]:[command]:[value]

Where:

[designator]= the short-name of the component to be controlled (see table 1)
[location] = the location of the component to be controlled
[command] = the command/query to send

 [value] = the value (if applicable) to set

Where a SCPI command is sent to query a property of the full modular test system, rather
than an individual component, the Designator and Window parameters are not used (for
example Get Internal Temperature).

Commands can be sent in upper or lower case and the return value will be an ASCII text
string.

These commands and queries can be sent using the DLL function Send SCPI Command when
the system is connected via the USB interface in a Microsoft Windows environment, or using
the USB interrupt commands on a Linux system (see Linux Send SCPI Command). In addition,
SCPI commands can also be sent using HTTP get/post commands or Telnet over a TCP/IP
network when the system is connected via the Ethernet RJ45 port (see Ethernet
Communication).

Test Solutions - Programming Manual Page 12
Modular Test Systems 19-Oct-17 (A9)

3.1 - ZTM Series System Operations

:[query]

The following queries provide information regarding the modular test system rather than the
individual test components, so there is no location or component designator to send with the
command.

 Description Command/Query

a Get Model Name MN?

b Get Serial Number SN?

c Get Configuration CONFIG:APP?

d Get Firmware FIRMWARE?

e Get Internal Temperature T[sensor]?

f Get Heat Alarm HEATALARM?

g Save Counters & States OPERATIONDATA:SAVE

Test Solutions - Programming Manual Page 13
Modular Test Systems 19-Oct-17 (A9)

3.1 (a) - Get Model Name

Description

Returns the full Mini-Circuits part number of the connected system.

Command Syntax

:MN?

Return String

MN=[model]

Variable Description

[model]
Full model name of the system (for example, “ZTM-
999”)

Examples

String to Send String Returned
:MN? MN=ZTM-999

DLL Implementation: Send_SCPI(":MN?", RetStr)

HTTP Implementation: http://10.10.10.10/:MN?

See Also

Get Serial Number

Test Solutions - Programming Manual Page 14
Modular Test Systems 19-Oct-17 (A9)

3.1 (b) - Get Serial Number

Description

Returns the serial number of the connected system.

Command Syntax

 :SN?

Return String

SN=[serial]

Variable Description

[serial]
Serial number of the system (for example,
“11401010001”)

Examples

String to Send String Returned
:SN? SN=11401010001

DLL Implementation: Send_SCPI(":SN?", RetStr)

HTTP Implementation: http://10.10.10.10/:SN?

See Also

Get Model Name

Test Solutions - Programming Manual Page 15
Modular Test Systems 19-Oct-17 (A9)

3.1 (c) - Get Configuration

Description

Returns a list of integer codes (separated by semi-colons) indicating the component(s)
mounted in each window of the system. The possible integer codes are:

0 = No component in this window
1 = SPDT in sub-location A only
2 = SPDT in sub-location B only
3 = SPDT in both sub-locations A and B
4 = SP4T
5 = MTS in sub-location A only
6 = MTS in sub-location B only
7 = MTS in both sub-locations A and B
8 = Attenuator in sub-location A only
9 = Attenuator in sub-location B only

10 = Attenuator in both sub-locations A and B
11 = SP6T
12 = SP8T

Command Syntax

 :CONFIG:APP?

Return String

APP=[window1];[window2];[window3];[window4];[window5];[window6]

Variable Description
[window1] Integer code indicating the component(s) in window 1
[window2] Integer code indicating the component(s) in window 2
[window3] Integer code indicating the component(s) in window 3

[window4]
Integer code indicating the component(s) in window 4
Not applicable to RCM Series

[window5]
Integer code indicating the component(s) in window 5
Not applicable to RCM Series

[window6]
Integer code indicating the component(s) in window 6
Not applicable to RCM Series

Test Solutions - Programming Manual Page 16
Modular Test Systems 19-Oct-17 (A9)

Examples

String to Send String Returned
:CONFIG:APP? APP=4;3;4;3;10;10
:CONFIG:APP? APP=10;10;10

“APP=4;3;4;3;10;10” would be returned for the ZTM Series example in figure 1, indicating:

 Window 1 = SP4T switch

 Window 2 = Two SPDT switches

 Window 3 = SP4T switch

 Window 4 = Two SPDT switches

 Window 5 = Two attenuators

 Window 6 = Two attenuators

“APP=10;10;10” would be returned for the RCM Series example in figure 2, indicating:

 Window 1 = Two attenuators

 Window 2 = Two attenuators

 Window 3 = Two attenuators

DLL Implementation: Send_SCPI(":CONFIG:APP?", RetStr)

HTTP Implementation: http://10.10.10.10/:CONFIG:APP?

Test Solutions - Programming Manual Page 17
Modular Test Systems 19-Oct-17 (A9)

3.1 (d) - Get Firmware

Description

Returns the firmware version of the system.

Command Syntax

 :FIRMWARE?

Return String

FIRMWARE=[firmware]

Variable Description
[firmware] Firmware version name (for example, “A1”)

Examples

String to Send String Returned
:FIRMWARE? FIRMWARE=A1

DLL Implementation: Send_SCPI(":FIRMWARE?", RetStr)

HTTP Implementation: http://10.10.10.10/:FIRMWARE?

Test Solutions - Programming Manual Page 18
Modular Test Systems 19-Oct-17 (A9)

3.1 (e) - Get Internal Temperature

Description

Returns the internal temperature of the modular test system, measured at the control board.

Command Syntax

 :TS0?

Return String

[temperature]

Variable Description

[temperature]
The temperature returned from the specified sensor in
degrees Celsius

Examples

String to Send String Returned
:TS0? 25.50

DLL Implementation: Send_SCPI(":TS0?", RetStr)

HTTP Implementation: http://10.10.10.10/:TS0?

See Also

Get Heat Alarm

Test Solutions - Programming Manual Page 19
Modular Test Systems 19-Oct-17 (A9)

3.1 (f) - Get Heat Alarm

Description

Returns an alarm code relating to the internal temperature of the modular test system.

Command Syntax

 :HEATALARM?

Return String

[alarm]

Variable Value Description
[alarm] 0 Internal temperature within normal limits

1 Internal temperature has exceeded the factory

defined limit (65°C)

Examples

String to Send String Returned
:HEATALARM? 0

DLL Implementation: Send_SCPI(":HEATALARM?", RetStr)

HTTP Implementation: http://10.10.10.10/:HEATALARM?

See Also

Get Internal Temperature

Test Solutions - Programming Manual Page 20
Modular Test Systems 19-Oct-17 (A9)

3.1 (g) - Save Counters & States

Description

Transfers any operation data from temporary to permanent memory. The data includes:
1. Last switch states
2. Last attenuation values
3. Latest switch counters
This command should be sent following completion of all switch / attenuator sequences and
prior to powering off the system in order to preserve the latest data. During normal
operation, this data is internally stored in volatile memory but automatically updated into
permanent memory every 3 minutes.

Requirements

Serial Number Range Firmware Version

Up to 11412319999 A8 to A99

From 11501010000 B2 or later

Command Syntax

:OPERATIONDATA:SAVE

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed
 1 - Success Command completed successfully

2 - Fail Command already sent within previous 3 minutes (wait

and try again)

Examples

String to Send String Returned
:OPERATIONDATA:SAVE 1 - Success

DLL Implementation: Send_SCPI(":OPERATIONDATA:SAVE", RetStr)

HTTP Implementation: http://10.10.10.10/:OPERATIONDATA:SAVE

See Also

Set Start-Up Attenuation Mode
Get Start-Up Attenuation Mode
Set Switch Start-Up Mode
Get Switch Start-Up Mode
Get Switch Counter

Test Solutions - Programming Manual Page 21
Modular Test Systems 19-Oct-17 (A9)

3.2 - Programmable Attenuator Control

:RUDAT:[location]:[command]:[value]

The following commands and queries allow control of a specific programmable attenuator
within the modular test system. The component designator “RUDAT” should be used along
with the location of the attenuator within the system (for example “1A” or “1B” where there
are 2 attenuators in window 1, or just “1” when there is only a single attenuator in window
1).

 Description Command/Query

a Set Attenuation ATT:[value]

b Get Attenuation ATT?

c Set Start-Up Attenuation Mode STARTUPATT:INDICATOR:[mode]

d Get Start-Up Attenuation Mode STARTUPATT:INDICATOR?

e Set Start-Up Attenuation Value STARTUPATT:VALUE:[value]

f Get Start-Up Attenuation Value STARTUPATT:VALUE?

g Get Max Attenuation MAX?

Test Solutions - Programming Manual Page 22
Modular Test Systems 19-Oct-17 (A9)

3.2 (a) - Set Attenuation

Description

Set the attenuation of a specific programmable attenuator.

Command Syntax

:ATT:[value]

Variable Description
[value] The attenuation to set in dB (up to 2 decimal places).

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (attenuation not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:RUDAT:1A:ATT:70.25 1 - Success
:RUDAT:2:ATT:0 1 - Success

DLL Implementation: Send_SCPI(":RUDAT:1A:ATT:70.25", RetStr)

HTTP Implementation: http://10.10.10.10/:RUDAT:1A:ATT:70.25

See Also

Get Attenuation
Get Maximum Attenuation

Test Solutions - Programming Manual Page 23
Modular Test Systems 19-Oct-17 (A9)

3.2 (b) - Get Attenuation

Description

Read the attenuation of a specific programmable attenuator.

Command Syntax

:ATT?

Return String

[value]

Variable Description

[value]
The attenuation setting (in dB) as a string of ASCII
characters

Examples

String to Send String Returned
:RUDAT:1A:ATT? 70.25
:RUDAT:2:ATT? 0.00

DLL Implementation: Send_SCPI(":RUDAT:1A:ATT?", RetStr)

HTTP Implementation: http://10.10.10.10/:RUDAT:1A:ATT?

See Also

Set Attenuation
Get Maximum Attenuation

Test Solutions - Programming Manual Page 24
Modular Test Systems 19-Oct-17 (A9)

3.2 (c) - Set Start-Up Attenuation Mode

Description

Sets the start-up mode of a specific attenuator when the system is powered up. The
attenuator can be configured to load the last remembered value, a specific fixed value or the
maximum possible attenuation.

Command Syntax

:STARTUPATT:INDICATOR:[mode]

Variable Value Description

[mode] L
Last Value - the attenuator will load the last
remembered attenuation
See Save Counters & States for correct operation

 F
Fixed Value - the attenuator will load a fixed value (see
Set Start-Up Attenuation Value)

 N
Normal - the attenuator will load the maximum
possible attenuation (this is the default setting)

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed
 1 - Success Command completed successfully

Examples

String to Send String Returned
:RUDAT:1A:STARTUPATT:INDICATOR:L 1 - Success
:RUDAT:2:STARTUPATT:INDICATOR:N 1 - Success

DLL Implementation:

Send_SCPI(":RUDAT:1A:STARTUPATT:INDICATOR:L", RetStr)

HTTP Implementation:
http://10.10.10.10/:RUDAT:1A:STARTUPATT:INDICATOR:L

See Also

Save Counters & States
Get Start-Up Attenuation Mode
Set Start-Up Attenuation Value
Get Start-Up Attenuation Value

Test Solutions - Programming Manual Page 25
Modular Test Systems 19-Oct-17 (A9)

3.2 (d) - Get Start-Up Attenuation Mode

Description

Returns the start-up mode of a specific attenuator when the ZTM Series system is powered
up. The attenuator can be configured to load the last remembered value, a specific fixed
value or the maximum possible attenuation.

Command Syntax

:STARTUPATT:INDICATOR?

Return String

[mode]

Variable Value Description

[mode] L
Last Value - the attenuator will load the last
remembered attenuation
See Save Counters & States for correct operation

 F
Fixed Value - the attenuator will load a fixed value (see
Set Start-Up Attenuation Value)

 N
Normal - the attenuator will load the maximum
possible attenuation (this is the default setting)

Examples

String to Send String Returned
:RUDAT:1A:STARTUPATT:INDICATOR? L
:RUDAT:2:STARTUPATT:INDICATOR? N

DLL Implementation:

Send_SCPI(":RUDAT:1A:STARTUPATT:INDICATOR?", RetStr)

HTTP Implementation:
http://10.10.10.10/:RUDAT:1A:STARTUPATT:INDICATOR?

See Also

Save Counters & States
Set Start-Up Attenuation Mode
Set Start-Up Attenuation Value
Get Start-Up Attenuation Value

Test Solutions - Programming Manual Page 26
Modular Test Systems 19-Oct-17 (A9)

3.2 (e) - Set Start-Up Attenuation Value

Description

Used in conjunction with Set Start-Up Attenuation Mode to set the start-up attenuation
value for a specific attenuator. This is the initial attenuation setting that will be used when
the ZTM Series system is powered up.

Command Syntax

:STARTUPATT:VALUE:[att]

Variable Description

[att]
The start-up attenuation setting to be loaded on
power up (only valid when the attenuator “Start-Up
Attenuation Mode” is set to mode “F” (fixed value).

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed
 1 - Success Command completed successfully

Examples

String to Send String Returned
:RUDAT:1A:STARTUPATT:VALUE:15 1 - Success
:RUDAT:2:STARTUPATT:VALUE:20.25 1 - Success

DLL Implementation:
 Send_SCPI(":RUDAT:1A:STARTUPATT:VALUE:15", RetStr)

HTTP Implementation:
 http://10.10.10.10/:RUDAT:1A:STARTUPATT:VALUE:15

See Also

Set Start-Up Attenuation Mode
Get Start-Up Attenuation Mode
Get Start-Up Attenuation Value

http://10.10.10.10/:RUDAT:1A:STARTUPATT:VALUE:15
http://10.10.10.10/:RUDAT:1A:STARTUPATT:VALUE:15

Test Solutions - Programming Manual Page 27
Modular Test Systems 19-Oct-17 (A9)

3.2 (f) - Get Start-Up Attenuation Value

Description

Returns the start-up attenuation value to be used for a specific attenuator when the ZTM
Series system is powered on. This setting only applies when the attenuator “Start-Up
Attenuation Mode” is set to mode “F” (fixed value).

Command Syntax

:STARTUPATT:VALUE?

Return String

[mode]

Variable Value Description

[mode] L
Last Value - the attenuator will load the last
remembered attenuation

 F
Fixed Value - the attenuator will load a fixed value (see
Set Start-Up Attenuation Value)

 N
Normal - the attenuator will load the maximum
possible attenuation (this is the default setting)

Examples

String to Send String Returned
:RUDAT:1A:STARTUPATT:VALUE? 15.00
:RUDAT:2:STARTUPATT:VALUE? 20.25

DLL Implementation:
 Send_SCPI(":RUDAT:1A:STARTUPATT:VALUE?", RetStr)

HTTP Implementation:
 http://10.10.10.10/:RUDAT:1A:STARTUPATT:VALUE?

See Also

Set Start-Up Attenuation Mode
Get Start-Up Attenuation Mode
Set Start-Up Attenuation Value

Test Solutions - Programming Manual Page 28
Modular Test Systems 19-Oct-17 (A9)

3.2 (g) - Get Maximum Attenuation

Description

Read the maximum possible attenuation setting of a specific programmable attenuator.

Command Syntax

:MAX?

Return String

[value]

Variable Description

[value]
The maximum attenuation setting (dB) as a string of
ASCII characters

Examples

String to Send String Returned
:RUDAT:1A:MAX? 95.00
:RUDAT:2:MAX? 95.00

DLL Implementation: Send_SCPI(":RUDAT:1A:MAX?", RetStr)

HTTP Implementation: http://10.10.10.10/:RUDAT:1A:MAX?

See Also

Set Attenuation
Get Attenuation

Test Solutions - Programming Manual Page 29
Modular Test Systems 19-Oct-17 (A9)

3.3 - SPDT Switch Control

:SPDT:[location]:[command]:[value]

:SPDT:[location]:[query]?

The following commands and queries allow control of a specific SPDT switch within the
modular test system. The component designator “SPDT” should be used along with the
location of the switch within the system (for example “1A” or “1B” where there are 2
switches in window 1, or just “1” when there is only a single switch in window 1). The
location “ALL” should be used when setting or querying the states of all switches.

 Description Command/Query

a Set SPDT Switch State SPDT:[location]:STATE:[value]

b Get SPDT Switch State SPDT:[location]:STATE?

c Set All SPDT Switch States SPDT:ALL:STATE:[values]

d Get All SPDT Switch States SPDT:ALL:STATE?

Test Solutions - Programming Manual Page 30
Modular Test Systems 19-Oct-17 (A9)

3.3 (a) - Set SPDT Switch State

Description

Set the state of a specific SPDT switch.

Command Syntax

:STATE:[value]

Variable Value Description
[value] 1 Com port connected to port 1
 2 Com port connected to port 2

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:SPDT:1A:STATE:2 1 - Success
:SPDT:2:STATE:1 1 - Success

DLL Implementation: Send_SCPI(":SPDT:1A:STATE:2", RetStr)

HTTP Implementation: http://10.10.10.10/:SPDT:1A:STATE:2

See Also

Get SPDT Switch State
Set All SPDT Switch States
Get All SPDT Switch States

Test Solutions - Programming Manual Page 31
Modular Test Systems 19-Oct-17 (A9)

3.3 (b) - Get SPDT Switch State

Description

Read the state of a specific SPDT switch.

Command Syntax

:STATE?

Return String

[value]

Variable Value Description
[value] 1 Com port connected to port 1
 2 Com port connected to port 2

Examples

String to Send String Returned
:SPDT:1A:STATE? 2
:SPDT:2:STATE? 1

DLL Implementation: Send_SCPI(":SPDT:1A:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SPDT:1A:STATE?

See Also

Set SPDT Switch State
Set All SPDT Switch States
Get All SPDT Switch States

Test Solutions - Programming Manual Page 32
Modular Test Systems 19-Oct-17 (A9)

3.3 (c) - Set All SPDT Switch States

Description

Simultaneously sets the state of all SPDT switches. The switch states are represented by a
string of up to 12 characters for the ZTM Series and up to 6 characters for the RCM Series,
with each character corresponding to an SPDT location in the test system, from location 1A,
1B, 2A, to 6B.

Note: The SPDT and transfer switches accept the same command arguments so a “Set All
SPDT Switches” command would also set a transfer switch if a state is specified for a location
containing a transfer switch.

Command Syntax

ZTM Series:
:STATE:[1A][1B][2A][2B][3A][3B][4A][4B][5A][5B][6A][6B]

RCM Series:
:STATE:[1A][1B][2A][2B][3A][3B]

Variable Value Description

[1A] to [6B] 1 Set SPDT state in this location to “Com to port 1”
 2 Set SPDT state in this location to “Com to port 2”

 x
Leave SPDT in this location unchanged / No SPDT in
this location

Note: The string of switch states must always be supplied starting with location 1A but digits
on the right-hand side can be omitted if the respective switch states are to be left unchanged
or if the location does not contain an SPDT switch.

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Test Solutions - Programming Manual Page 33
Modular Test Systems 19-Oct-17 (A9)

Examples

The example ZTM Series configuration of figure 3 has SPDT switches in locations 2A, 2B, 4A
and 4B so their states are represented by the 3rd, 4th, 7th and 8th characters in the string of
switch states. All other characters should be “x” since those locations do not contain an
SPDT switch.

Fig 3 - Example configuration with SPDT switches in locations 2A, 2B, 4A and 4B

To set the SPDT switches in locations 2A and 2B to state 2, whilst leaving the states of the
SPDT switches in locations 4A and 4B unchanged, the string to send is “xx22xxxxxxxx”.

To set all 4 SPDT switches in locations 2A, 2B, 4A and 4B to states 2, 1, 2 and 1 respectively,
the string to send is “xx21xx21xxxx”.

Note: In both cases above, the trailing “x” characters (on the right-hand side of the string)
can be omitted.

String to Send String Returned
:SPDT:ALL:STATE:xx22 1 - Success
:SPDT:ALL:STATE:xx21xx21 1 - Success

DLL Implementation: Send_SCPI(":SPDT:ALL:STATE:xx21xx21", RetStr)

HTTP Implementation: http://10.10.10.10/:SPDT:ALL:STATE:xx21xx21

See Also

Set SPDT Switch State
Get SPDT Switch State
Get All SPDT Switch States

Test Solutions - Programming Manual Page 34
Modular Test Systems 19-Oct-17 (A9)

3.3 (d) - Get All SPDT Switch States

Description

Returns the state of all SPDT switches. The switch states are represented by a string of 12
characters for the ZTM Series and 6 characters for the RCM Series, with each character
corresponding to an SPDT location in the system, from location 1A, 1B, 2A, to 6B.

Note: The states of any transfer switches in the system will also be reported in the string.

Command Syntax

:STATE?

Return String

ZTM Series:
[1A][1B][2A][2B][3A][3B][4A][4B][5A][5B][6A][6B]

RCM Series:
[1A][1B][2A][2B][3A][3B]

Variable Value Description

[1A] to [6B] 1 SPDT state in this location is “Com to port 1”
 2 SPDT state in this location is “Com to port 2”
 x No SPDT or transfer switch in this location

Test Solutions - Programming Manual Page 35
Modular Test Systems 19-Oct-17 (A9)

Example

The example ZTM Series configuration of figure 4 has SPDT switches in locations 2A, 2B, 4A
and 4B so their states are represented by the 3rd, 4th, 7th and 8th characters in the returned
string of switch states. All other characters can be disregarded.

Fig 4 - Example configuration with SPDT switches in locations 2A, 2B, 4A and 4B

String to Send String Returned
:SPDT:ALL:STATE? xx21xx21xxxx

A return string of “xx21xx21xxxx” indicates the following SPDT switch states:

SPDT Window State Description

2A 2 Com connected to port 2

2B 1 Com connected to port 1

4A 2 Com connected to port 2

4B 1 Com connected to port 1

DLL Implementation: Send_SCPI(":SPDT:ALL:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SPDT:ALL:STATE?

See Also

Set SPDT Switch State
Get SPDT Switch State
Set All SPDT Switch States

Test Solutions - Programming Manual Page 36
Modular Test Systems 19-Oct-17 (A9)

3.4 - SP4T Switch Control

:SP4T:[window]:[command]:[value]

:SP4T:[window]:[query]?

The following commands and queries allow control of a specific SP4T switch within the
modular test system. The component designator “SP4T” should be used along with the
location of the switch within system (windows 1 to 6). The location “ALL” should be used
when setting or querying the states of all switches.

 Description Command/Query

a Set SP4T Switch State SP4T:[window]:STATE:[value]

b Get SP4T Switch State SP4T:[window]:STATE?

c Set All SP4T Switch States SP4T:ALL:STATE:[values]

c Get All SP4T Switch States SP4T:ALL:STATE?

Test Solutions - Programming Manual Page 37
Modular Test Systems 19-Oct-17 (A9)

3.4 (a) - Set SP4T Switch State

Description

Set the state of a specific SP4T switch.

Command Syntax

:STATE:[value]

Variable Value Description
[value] 0 All ports disconnected
 1 Com port connected to port 1
 2 Com port connected to port 2
 3 Com port connected to port 3
 4 Com port connected to port 4

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:SP4T:1:STATE:3 1 - Success
:SP4T:2:STATE:0 1 - Success

DLL Implementation: Send_SCPI(":SP4T:1:STATE:3", RetStr)

HTTP Implementation: http://10.10.10.10/:SP4T:1:STATE:3

See Also

Get SP4T Switch State
Set All SP4T Switch States
Get All SP4T Switch States

Test Solutions - Programming Manual Page 38
Modular Test Systems 19-Oct-17 (A9)

3.4 (b) - Get SP4T Switch State

Description

Read the state of a specific SP4T switch.

Command Syntax

:STATE?

Return String

[value]

Variable Value Description
[value] 0 All ports disconnected
 1 Com port connected to port 1
 2 Com port connected to port 2
 3 Com port connected to port 3
 4 Com port connected to port 4

Examples

String to Send String Returned
:SP4T:1:STATE? 1
:SP4T:2:STATE? 0

DLL Implementation: Send_SCPI(":SP4T:1:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SP4T:1:STATE?

See Also

Set SP4T Switch State
Set All SP4T Switch States
Get All SP4T Switch States

Test Solutions - Programming Manual Page 39
Modular Test Systems 19-Oct-17 (A9)

3.4 (c) - Set All SP4T Switch States

Description

Simultaneously sets the state of all SP4T switches. The switch states are represented by a
string of up to 6 characters for the ZTM Series and up to 3 characters for the RCM Series,
with each character corresponding to an SP4T location in the system.

Command Syntax

ZTM Series:
:STATE:[1][2][3][4][5][6]

RCM Series:
:STATE:[1][2][3]

Variable Value Description

[1] to [6] 0 Disconnect all ports for the SP4T in this location
 1 Set SP4T state in this location to “Com to port 1”
 2 Set SP4T state in this location to “Com to port 2”
 3 Set SP4T state in this location to “Com to port 3”
 4 Set SP4T state in this location to “Com to port 4”

 x
Leave SP4T in this location unchanged / No SP4T in
this location

Note: The string of switch states must always be supplied starting with window 1 but digits
on the right-hand side can be omitted if the respective switch states are to be left unchanged
or if the window does not contain an SP4T switch.

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Test Solutions - Programming Manual Page 40
Modular Test Systems 19-Oct-17 (A9)

Examples

The example ZTM Series configuration of figure 5 has SP4T switches in locations 1 and 3 so
their states are represented by the 1st and 3rd characters in the string of switch states. All
other characters should be “x” since those locations do not contain an SP4T switch.

Fig 5 - Example configuration with SP4T switches in locations 1 and 3

To set the SP4T switch in location 1 to state 3, whilst leaving the state of the SP4T switch in
location 3 unchanged, the string to send is “3xxxxx”.

To set both SP4T switches in to state 4, the string to send is “4x4xxx”.

Note: In both cases above, the trailing “x” characters (on the right-hand side of the string)
can be omitted.

String to Send String Returned
:SP4T:ALL:STATE:3 1 - Success
:SP4T:ALL:STATE:4x4 1 - Success

DLL Implementation: Send_SCPI(":SP4T:ALL:STATE:4x4", RetStr)

HTTP Implementation: http://10.10.10.10/:SP4T:ALL:STATE:4x4

See Also

Set SP4T Switch State
Get SP4T Switch State
Get All SP4T Switch States

Test Solutions - Programming Manual Page 41
Modular Test Systems 19-Oct-17 (A9)

3.4 (d) - Get All SP4T Switch States

Description

Returns the state of all SP4T switches. The switch states are represented by a string of 6
characters for the ZTM Series and 3 characters for the RCM Series, with each character
corresponding to an SP4T location in the system.

Command Syntax

:STATE?

Return String

ZTM Series:
[1][2][3][4][5][6]

RCM Series:
[1][2][3]

Variable Value Description

[1] to [6] 0 All ports for the SP4T in this location disconnected
 1 SP4T state in this location is “Com to port 1”
 2 SP4T state in this location is “Com to port 2”
 3 SP4T state in this location is “Com to port 3”
 4 SP4T state in this location is “Com to port 4”
 x No SP4T in this location

Test Solutions - Programming Manual Page 42
Modular Test Systems 19-Oct-17 (A9)

Example

The example ZTM Series configuration of figure 6 has SP4T switches in windows 1 and 3 so
their states are represented by the 1st and 3rd characters in the returned string of switch
states. All other characters can be disregarded.

Fig 6 - Example configuration with SP4T switches in windows 1 and 3

String to Send String Returned
:SP4T:ALL:STATE? 3x0xxx

A return string of “3x0xxx” indicates the following SP4T switch states:

SP4T Window State Description

1 3 Com connected to port 3

3 0 All ports disconnected

DLL Implementation: Send_SCPI(":SP4T:ALL:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SP4T:ALL:STATE?

See Also

Set SP4T Switch State
Get SP4T Switch State
Set All SP4T Switch States

Test Solutions - Programming Manual Page 43
Modular Test Systems 19-Oct-17 (A9)

3.5 - SP6T Switch Control

:SP6T:[window]:[command]:[value]

:SP6T:[window]:[query]?

The following commands and queries allow control of a specific SP6T switch within the
modular test system. The component designator “SP6T” should be used along with the
location of the switch within the system. The location “ALL” should be used when setting or
querying the states of all switches.

 Description Command/Query

a Set SP6T Switch State SP6T:[window]:STATE:[value]

b Get SP6T Switch State SP6T:[window]:STATE?

c Set All SP6T Switch States SP6T:ALL:STATE:[values]

c Get All SP6T Switch States SP6T:ALL:STATE?

Test Solutions - Programming Manual Page 44
Modular Test Systems 19-Oct-17 (A9)

3.5 (a) - Set SP6T Switch State

Description

Set the state of a specific SP6T switch.

Command Syntax

:STATE:[value]

Variable Value Description
[value] 0 All ports disconnected
 1 Com port connected to port 1
 2 Com port connected to port 2
 3 Com port connected to port 3
 4 Com port connected to port 4
 5 Com port connected to port 5
 6 Com port connected to port 6

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:SP6T:1:STATE:3 1 - Success
:SP6T:2:STATE:0 1 - Success

DLL Implementation: Send_SCPI(":SP6T:1:STATE:3", RetStr)

HTTP Implementation: http://10.10.10.10/:SP6T:1:STATE:3

See Also

Get SP6T Switch State
Set All SP6T Switch States
Get All SP6T Switch States

Test Solutions - Programming Manual Page 45
Modular Test Systems 19-Oct-17 (A9)

3.5 (b) - Get SP6T Switch State

Description

Read the state of a specific SP6T switch.

Command Syntax

:STATE?

Return String

[value]

Variable Value Description
[value] 0 All ports disconnected
 1 Com port connected to port 1
 2 Com port connected to port 2
 3 Com port connected to port 3
 4 Com port connected to port 4
 5 Com port connected to port 5
 6 Com port connected to port 6

Examples

String to Send String Returned
:SP6T:1:STATE? 3
:SP6T:2:STATE? 0

DLL Implementation: Send_SCPI(":SP6T:1:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SP6T:1:STATE?

See Also

Set SP6T Switch State
Set All SP6T Switch States
Get All SP6T Switch States

Test Solutions - Programming Manual Page 46
Modular Test Systems 19-Oct-17 (A9)

3.5 (c) - Set All SP6T Switch States

Description

Simultaneously sets the state of all SP6T switches. The switch states are represented by a
string of up to 6 characters for the ZTM Series and up to 5 characters for the RCM Series,
with each character corresponding to an SP6T location in the system.

Command Syntax

ZTM Series:
:STATE:[1][2][3][4][5][6]

RCM Series:
:STATE:[1][2][3]

Variable Value Description

[1] to [6] 0 Disconnect all ports for the SP6T in this window
 1 Set SP6T state in this window to “Com to port 1”
 2 Set SP6T state in this window to “Com to port 2”
 3 Set SP6T state in this window to “Com to port 3”
 4 Set SP6T state in this window to “Com to port 4”
 5 Set SP6T state in this window to “Com to port 5”
 6 Set SP6T state in this window to “Com to port 6”

 x
Leave SP6T in this window unchanged / No SP6T in
this window

Note: The string of switch states must always be supplied starting with window 1 but digits
on the right-hand side can be omitted if the respective switch states are to be left unchanged
or if the window does not contain an SP6T switch.

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Test Solutions - Programming Manual Page 47
Modular Test Systems 19-Oct-17 (A9)

Examples

The example ZTM Series configuration of figure 7 has SP6T switches in windows 1 and 3 so
their states are represented by the 1st and 3rd characters in the string of switch states. All
other characters should be “x” since those windows do not contain an SP6T switch.

Fig 7 - Example configuration with SP6T switches in windows 1 and 3

To set the SP6T switch in window 1 to state 3, whilst leaving the state of the SP6T switch in
window 3 unchanged, the string to send is “3xxxxx”.

To set both SP6T switches in to state 4, the string to send is “4x4xxx”.

Note: In both cases above, the trailing “x” characters (on the right-hand side of the string)
can be omitted.

String to Send String Returned
:SP6T:ALL:STATE:3 1 - Success
:SP6T:ALL:STATE:4x4 1 - Success

DLL Implementation: Send_SCPI(":SP6T:ALL:STATE:4x4", RetStr)

HTTP Implementation: http://10.10.10.10/:SP6T:ALL:STATE:4x4

See Also

Set SP6T Switch State
Get SP6T Switch State
Get All SP6T Switch States

Test Solutions - Programming Manual Page 48
Modular Test Systems 19-Oct-17 (A9)

3.5 (d) - Get All SP6T Switch States

Description

Returns the state of all SP6T switches. The switch states are represented by a string of 6
characters for the ZTM Series and 3 characters for the RCM Series, with each character
corresponding to an SP6T location.

Command Syntax

:STATE?

Return String

ZTM Series:
[1][2][3][4][5][6]

RCM Series:
[1][2][3]

Variable Value Description

[1] to [6] 0 All ports for the SP6T in this window disconnected
 1 SP6T state in this window is “Com to port 1”
 2 SP6T state in this window is “Com to port 2”
 3 SP6T state in this window is “Com to port 3”
 4 SP6T state in this window is “Com to port 4”
 5 SP6T state in this window is “Com to port 5”
 6 SP6T state in this window is “Com to port 6”
 x No SP6T in this window

Test Solutions - Programming Manual Page 49
Modular Test Systems 19-Oct-17 (A9)

Example

The example ZTM Series configuration of figure 8 has SP6T switches in windows 1 and 3 so
their states are represented by the 1st and 3rd characters in the returned string of switch
states. All other characters can be disregarded.

Fig 8 - Example configuration with SP6T switches in windows 1 and 3

String to Send String Returned
:SP6T:ALL:STATE? 3x0xxx

A return string of “3x0xxx” indicates the following SP6T switch states:

SP6T Window State Description

1 3 Com connected to port 3

3 0 All ports disconnected

DLL Implementation: Send_SCPI(":SP6T:ALL:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SP6T:ALL:STATE?

See Also

Set SP6T Switch State
Get SP6T Switch State
Set All SP6T Switch States

Test Solutions - Programming Manual Page 50
Modular Test Systems 19-Oct-17 (A9)

3.6 - SP8T Switch Control

:SP8T:[window]:[command]:[value]

:SP8T:[window]:[query]?

The following commands and queries allow control of a specific SP8T switch within the
modular test system. The component designator “SP8T” should be used along with the
location of the switch within the system. The location “ALL” should be used when setting or
querying the states of all switches.

Note: SP8T switches are larger than the standard window size so the maximum number of
fitted SP8T switches is 4 for the ZTM Series and 2 for the RCM Series.

 Description Command/Query

a Set SP8T Switch State SP8T:[window]:STATE:[value]

b Get SP8T Switch State SP8T:[window]:STATE?

c Set All SP8T Switch States SP8T:ALL:STATE:[values]

c Get All SP8T Switch States SP8T:ALL:STATE?

Test Solutions - Programming Manual Page 51
Modular Test Systems 19-Oct-17 (A9)

3.6 (a) - Set SP8T Switch State

Description

Set the state of a specific SP8T switch.

Command Syntax

:STATE:[value]

Variable Value Description
[value] 0 All ports disconnected
 1 Com port connected to port 1
 2 Com port connected to port 2
 3 Com port connected to port 3
 4 Com port connected to port 4
 5 Com port connected to port 5
 6 Com port connected to port 6
 7 Com port connected to port 7
 8 Com port connected to port 8

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:SP8T:1:STATE:3 1 - Success
:SP8T:2:STATE:0 1 - Success

DLL Implementation: Send_SCPI(":SP8T:1:STATE:3", RetStr)

HTTP Implementation: http://10.10.10.10/:SP8T:1:STATE:3

See Also

Get SP8T Switch State
Set All SP8T Switch States
Get All SP8T Switch States

Test Solutions - Programming Manual Page 52
Modular Test Systems 19-Oct-17 (A9)

3.6 (b) - Get SP8T Switch State

Description

Read the state of a specific SP8T switch.

Command Syntax

:STATE?

Return String

[value]

Variable Value Description
[value] 0 All ports disconnected
 1 Com port connected to port 1
 2 Com port connected to port 2
 3 Com port connected to port 3
 4 Com port connected to port 4
 5 Com port connected to port 5
 6 Com port connected to port 6
 7 Com port connected to port 7
 8 Com port connected to port 8

Examples

String to Send String Returned
:SP8T:1:STATE? 3
:SP8T:2:STATE? 0

DLL Implementation: Send_SCPI(":SP8T:1:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SP8T:1:STATE?

See Also

Set SP8T Switch State
Set All SP8T Switch States
Get All SP8T Switch States

Test Solutions - Programming Manual Page 53
Modular Test Systems 19-Oct-17 (A9)

3.6 (c) - Set All SP8T Switch States

Description

Simultaneously sets the state of all SP8T switches. The switch states are represented by a
string of up to 4 characters for the ZTM Series and up to 2 characters for the RCM Series,
with each character corresponding to an SP8T location in the system.

Command Syntax

ZTM Series:
:STATE:[1][2][3][4]

RCM Series:
:STATE:[1][2]

Variable Value Description

[1] to [4] 0 Disconnect all ports for the SP8T in this window
 1 Set SP8T state in this window to “Com to port 1”
 2 Set SP8T state in this window to “Com to port 2”
 3 Set SP8T state in this window to “Com to port 3”
 4 Set SP8T state in this window to “Com to port 4”
 5 Set SP8T state in this window to “Com to port 5”
 6 Set SP8T state in this window to “Com to port 6”
 7 Set SP8T state in this window to “Com to port 7”
 8 Set SP8T state in this window to “Com to port 8”

 x
Leave SP8T in this window unchanged / No SP8T in
this window

Note: The string of switch states must always be supplied starting with window 1 but digits
on the right-hand side can be omitted if the respective switch states are to be left unchanged
or if the window does not contain an SP8T switch.

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Test Solutions - Programming Manual Page 54
Modular Test Systems 19-Oct-17 (A9)

Examples

ZTM-4SP8T-12 is fitted with 4 x SP8T switches in positions 1 to 4.

To set the SP8T switch in positions 1 and 3 to state 3, whilst leaving the state of the SP8T
switches in position 2 and 3 unchanged, the string to send is “3x3”.

To set all SP8T switches to state 4, the string to send is “4444”.

Note: Trailing “x” characters (on the right-hand side of the string) can be omitted.

String to Send String Returned
:SP8T:ALL:STATE:3x3 1 - Success
:SP8T:ALL:STATE:4444 1 - Success

DLL Implementation: Send_SCPI(":SP8T:ALL:STATE:4444", RetStr)

HTTP Implementation: http://10.10.10.10/:SP8T:ALL:STATE:4444

See Also

Set SP8T Switch State
Get SP8T Switch State
Get All SP8T Switch States

Test Solutions - Programming Manual Page 55
Modular Test Systems 19-Oct-17 (A9)

3.6 (d) - Get All SP8T Switch States

Description

Returns the state of all SP8T switches. The switch states are represented by a string of 4
characters for the ZTM Series and 2 characters for the RCM Series, with each character
corresponding to an SP8T location.

Command Syntax

:STATE?

Return String

ZTM Series:
[1][2][3][4]

RCM Series:
[1][2]

Variable Value Description

[1] to [4] 0 All ports for the SP8T in this window disconnected
 1 SP8T state in this window is “Com to port 1”
 2 SP8T state in this window is “Com to port 2”
 3 SP8T state in this window is “Com to port 3”
 4 SP8T state in this window is “Com to port 4”
 5 SP8T state in this window is “Com to port 5”
 6 SP8T state in this window is “Com to port 6”
 7 SP8T state in this window is “Com to port 7”
 8 SP8T state in this window is “Com to port 8”
 x No SP8T in this window

Test Solutions - Programming Manual Page 56
Modular Test Systems 19-Oct-17 (A9)

Example

ZTM-4SP8T-12 is fitted with 4 x SP8T switches in positions 1 to 4.

String to Send String Returned
:SP8T:ALL:STATE? 4422

A return string of “4422” indicates the following SP8T switch states:

SP8T Window State Description

1 4 Com connected to port 4

2 4 Com connected to port 4

3 2 Com connected to port 2

4 2 Com connected to port 2

DLL Implementation: Send_SCPI(":SP8T:ALL:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:SP8T:ALL:STATE?

See Also

Set SP8T Switch State
Get SP8T Switch State
Set All SP8T Switch States

Test Solutions - Programming Manual Page 57
Modular Test Systems 19-Oct-17 (A9)

3.7 - Transfer Switch Control

:MTS:[location]:[command]:[value]

:MTS:[location]:[query]?

The following commands and queries allow control of a specific transfer switch within the
modular test system. The component designator “MTS” should be used along with the
location of the switch within the system (for example “1A” or “1B” where there are 2
switches in location 1, or just “1” when there is only a single switch in location 1). The
location “ALL” should be used when setting or querying the states of all switches.

 Description Command/Query

a Set Transfer Switch State MTS:[location]:STATE:[value]

b Get Transfer Switch State MTS:[location]:STATE?

c Set All Transfer Switch States MTS:ALL:STATE:[values]

d Get All Transfer Switch States MTS:ALL:STATE?

Test Solutions - Programming Manual Page 58
Modular Test Systems 19-Oct-17 (A9)

3.7 (a) - Set Transfer Switch State

Description

Set the state of a specific transfer switch.

Command Syntax

:STATE:[value]

Variable Value Description

[value] 1

Transfer switch in state 1:

 Port J1 connected to port J3

 Port J2 connected to port J4

 2

Transfer switch in state 2:

 Port J1 connected to port J2

 Port J3 connected to port J4

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:MTS:1A:STATE:2 1 - Success
:MTS:2:STATE:1 1 - Success

DLL Implementation: Send_SCPI(":MTS:1A:STATE:2", RetStr)

HTTP Implementation: http://10.10.10.10/:MTS:1A:STATE:2

See Also

Get Transfer Switch State
Set All Transfer Switch States
Get All Transfer Switch States

Test Solutions - Programming Manual Page 59
Modular Test Systems 19-Oct-17 (A9)

3.7 (b) - Get Transfer Switch State

Description

Read the state of a specific transfer switch.

Command Syntax

:STATE?

Return String

[value]

Variable Value Description

[value] 1

Transfer switch in state 1:

 Port J1 connected to port J3

 Port J2 connected to port J4

 2

Transfer switch in state 2:

 Port J1 connected to port J2

 Port J3 connected to port J4

Examples

String to Send String Returned
:MTS:1A:STATE? 1
:MTS:2:STATE? 0

DLL Implementation: Send_SCPI(":MTS:1A:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:MTS:1A:STATE?

See Also

Set Transfer Switch State
Set All Transfer Switch States
Get All Transfer Switch States

Test Solutions - Programming Manual Page 60
Modular Test Systems 19-Oct-17 (A9)

3.7 (c) - Set All Transfer Switch States

Description

Simultaneously sets the state of all transfer switches. The switch states are represented by a
string of up to 12 characters for the ZTM Series or up to 6 characters for the RCM Series, with
each character corresponding to a transfer switch location within the system.

Note: The SPDT and transfer switches accept the same command arguments so a “Set All
Transfer Switches” command would also set an SPDT switch if a state is specified for a
location containing an SPDT switch.

Command Syntax

ZTM Series:
:STATE:[1A][1B][2A][2B][3A][3B][4A][4B][5A][5B][6A][6B]

RCM Series:
:STATE:[1A][1B][2A][2B][3A][3B]

Variable Value Description

[1A] to [6B] 1

Set transfer switch to state 1:

 Port J1 connected to port J3

 Port J2 connected to port J4

 2

Set transfer switch to state 2:

 Port J1 connected to port J2

 Port J3 connected to port J4

 x
Leave transfer switch state in this location unchanged
/ No transfer switch in this location

Note: The string of switch states must always be supplied starting with location 1A but digits
on the right-hand side can be omitted if the respective switch states are to be left unchanged
or if the location does not contain a transfer switch.

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Test Solutions - Programming Manual Page 61
Modular Test Systems 19-Oct-17 (A9)

Examples

The example ZTM Series configuration of figure 9 has transfer switches in locations 2A, 2B,
4A and 4B so their states are represented by the 3rd, 4th, 7th and 8th characters in the string of
switch states. All other characters should be “x” since those locations do not contain a
transfer switch.

Fig 9 - Example configuration with transfer switches in locations 2A, 2B, 4A and 4B

To set the transfer switches in locations 2A and 2B to state 1, whilst leaving the states of the
transfer switches in locations 4A and 4B unchanged, the string to send is “xx11xxxxxxxx”.

To set all 4 transfer switches in locations 2A, 2B, 4A and 4B to states 2, 2, 2 and 1
respectively, the string to send is “xx22xx21xxxx”.

Note: In both cases above, the trailing “x” characters (on the right-hand side of the string)
can be omitted.

String to Send String Returned
:MTS:ALL:STATE:xx11 1 - Success
:MTS:ALL:STATE:xx22xx21 1 - Success

DLL Implementation: Send_SCPI(":MTS:ALL:STATE:xx22xx21", RetStr)

HTTP Implementation: http://10.10.10.10/:MTS:ALL:STATE:xx22xx21

See Also

Set Transfer Switch State
Get Transfer Switch State
Get All Transfer Switch States

Test Solutions - Programming Manual Page 62
Modular Test Systems 19-Oct-17 (A9)

3.7 (d) - Get All Transfer Switch States

Description

Returns the state of all transfer switches. The switch states are represented by a string of 12
characters for the ZTM Series or 6 characters for the RCM Series, with each character
corresponding to a transfer switch slot sub-location in the system.

Note: The states of any SPDT switches in the ZTM Series system will also be reported in the
string.

Command Syntax

:STATE?

Return String

ZTM Series:
[1A][1B][2A][2B][3A][3B][4A][4B][5A][5B][6A][6B]

RCM Series:
[1A][1B][2A][2B][3A][3B]

Variable Value Description

[1A] to [6B] 1

Transfer switch state in this location is 1:

 Port J1 connected to port J3

 Port J2 connected to port J4

 2

Transfer switch state in this location is 2:

 Port J1 connected to port J2

 Port J3 connected to port J4
 x No transfer or SPDT switch in this location

Test Solutions - Programming Manual Page 63
Modular Test Systems 19-Oct-17 (A9)

Example

The example ZTM Series configuration of figure 10 has transfer switches in slots 2A, 2B, 4A
and 4B so their states are represented by the 3rd, 4th, 7th and 8th characters in the returned
string of switch states. All other characters can be disregarded.

Fig 10 - Example configuration with transfer switches in slots 2A, 2B, 4A and 4B

String to Send String Returned
:MTS:ALL:STATE? xx12xx11xxxx

A return string of “xx12xx11xxxx” indicates the following transfer switch states:

MTS Window State Description

2A 1
 Port J1 connected to port J3

 Port J2 connected to port J4

2B 2
 Port J1 connected to port J2

 Port J3 connected to port J4

4A 1
 Port J1 connected to port J3

 Port J2 connected to port J4

4B 1
 Port J1 connected to port J3

 Port J2 connected to port J4

DLL Implementation: Send_SCPI(":MTS:ALL:STATE?", RetStr)

HTTP Implementation: http://10.10.10.10/:MTS:ALL:STATE?

See Also

Set Transfer Switch State
Get Transfer Switch State
Set All Transfer Switch States

Test Solutions - Programming Manual Page 64
Modular Test Systems 19-Oct-17 (A9)

3.8 - Switch Start-Up and Counter Properties

:SPDT:[location]:[command]:[value]

:SP4T:[location]:[command]:[value]

:SP6T:[location]:[command]:[value]

:MTS:[location]:[command]:[value]

The following commands and queries enable the user to work with the start-up settings and
counter for any given switch in the modular test system. The component designator “SPDT”,
“SP4T, or “MTS” should be used along with the location of the switch within the system.

 Description Command/Query

a Set Switch Start-Up Mode STARTUPSW:INDICATOR:[mode]

b Get Switch Start-Up Mode STARTUPSW:INDICATOR?

c Get Switch Counter SCOUNTER?

Test Solutions - Programming Manual Page 65
Modular Test Systems 19-Oct-17 (A9)

3.8 (a) - Set Switch Start-Up Mode

Description

Sets the start-up state for a specific switch when the system is powered up.

Command Syntax

:STARTUPSW:INDICATOR:[mode]

Variable Value Description

[mode] L
Last Value - the switch will power up with the last
remembered switch state
See Save Counters & States for correct operation

 N
Normal - the switch will power up in the default state
(Com port connected to port 1)

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed
 1 - Success Command completed successfully

Examples

String to Send String Returned
:SPDT:1A:STARTUPSW:INDICATOR:L 1 - Success
:SP4T:1:STARTUPSW:INDICATOR:L 1 - Success
:SP6T:1:STARTUPSW:INDICATOR:L 1 - Success
:MTS:1A:STARTUPSW:INDICATOR:L 1 - Success

DLL Implementation:

Send_SCPI(":SPDT:1A:STARTUPSW:INDICATOR:L", RetStr)

Send_SCPI(":SP4T:1:STARTUPSW:INDICATOR:L", RetStr)

Send_SCPI(":SP6T:1:STARTUPSW:INDICATOR:L", RetStr)

Send_SCPI(":MTS:1A:STARTUPSW:INDICATOR:L", RetStr)

HTTP Implementation:
http://10.10.10.10/:SPDT:1A:STARTUPSW:INDICATOR:L

http://10.10.10.10/:SP4T:1:STARTUPSW:INDICATOR:L

http://10.10.10.10/:SP6T:1:STARTUPSW:INDICATOR:L

http://10.10.10.10/:MTS:1A:STARTUPSW:INDICATOR:L

See Also

Save Counters & States
Get Switch Start-Up Mode
Get Switch Counter

Test Solutions - Programming Manual Page 66
Modular Test Systems 19-Oct-17 (A9)

3.8 (b) - Get Switch Start-Up Mode

Description

Returns the start-up state that a specific switch will use when the system is powered up.

Command Syntax

:STARTUPSW:INDICATOR?

Return String

[mode]

Variable Value Description

[mode] L
Last Value - the switch will power up with the last
remembered switch state
See Save Counters & States for correct operation

 N
Normal - the switch will power up in the default state
(Com port connected to port 1)

Examples

String to Send String Returned
:SPDT:1A:STARTUPATT:INDICATOR? L
:SP4T:1:STARTUPATT:INDICATOR? L

:SP6T:1:STARTUPATT:INDICATOR? L

:MTS:1A:STARTUPATT:INDICATOR? L

DLL Implementation:

Send_SCPI(":SPDT:1A:STARTUPSW:INDICATOR?", RetStr)

Send_SCPI(":SP4T:1:STARTUPSW:INDICATOR?", RetStr)

Send_SCPI(":SP6T:1:STARTUPSW:INDICATOR?", RetStr)

Send_SCPI(":MTS:1A:STARTUPSW:INDICATOR?", RetStr)

HTTP Implementation:
http://10.10.10.10/:SPDT:1A:STARTUPSW:INDICATOR?

http://10.10.10.10/:SP4T:1:STARTUPSW:INDICATOR?

http://10.10.10.10/:SP6T:1:STARTUPSW:INDICATOR?

http://10.10.10.10/:MTS:1A:STARTUPSW:INDICATOR?

See Also

Save Counters & States
Set Switch Start-Up Mode
Get Switch Counter

Test Solutions - Programming Manual Page 67
Modular Test Systems 19-Oct-17 (A9)

3.8 (c) - Get Switch Counter

Description

Returns a counter value indicating the number of switching cycles undertaken in the lifetime
of a specific switch.

Note: See Save Counters & States for correct operation.

Command Syntax

:SCOUNTER?

Return String (SPDT and MTS)

[count]

Variable Description

[count]
The number of switch cycles undertaken in the
lifetime of the specified switch

Return String (SP4T and SP6T)

[count1];[count2];[count3];[count4]

Variable Description

[count1]
The number of connections to port 1 undertaken in
the lifetime of the specified switch

[count2]
The number of connections to port 2 undertaken in
the lifetime of the specified switch

[count3]
The number of connections to port 3 undertaken in
the lifetime of the specified switch

[count4]
The number of connections to port 4 undertaken in
the lifetime of the specified switch

[count5]
SP6T only. The number of connections to port 5
undertaken in the lifetime of the specified switch

[count6]
SP6T only. The number of connections to port 6
undertaken in the lifetime of the specified switch

Test Solutions - Programming Manual Page 68
Modular Test Systems 19-Oct-17 (A9)

Examples

String to Send String Returned
:SPDT:1A:SCOUNTER? 9540
:SP4T:1:SCOUNTER? 2000;1253;1500;1685

:SP6T:1:SCOUNTER? 195;452;300;125;850;647

:MTS:1A:SCOUNTER? 9540

DLL Implementation: Send_SCPI(":SPDT:1A:SCOUNTER?", RetStr)

Send_SCPI(":SP4T:1:SCOUNTER?", RetStr)

Send_SCPI(":SP6T:1:SCOUNTER?", RetStr)

Send_SCPI(":MTS:1A:SCOUNTER?", RetStr)

HTTP Implementation: http://10.10.10.10/:SPDT:1A:SCOUNTER?

http://10.10.10.10/:SP4T:1:SCOUNTER?

http://10.10.10.10/:SP6T:1:SCOUNTER?

http://10.10.10.10/:MTS:1A:SCOUNTER?

See Also

Save Counters & States
Set Switch Start-Up Mode
Get Switch Start-Up Mode

Test Solutions - Programming Manual Page 69
Modular Test Systems 19-Oct-17 (A9)

3.9 - Component Labels

These commands enable the user to set a custom label for easy identification on any given
component in the modular test system. The component designator is not needed so the full
SCPI commands are as below.

 Description Command/Query

a Set Component Label :LABEL:[location]:”[text]”

b Get Component Label :LABEL:[location]?

3.9 (a) - Set Component Label

Description

Set a custom label for easy identification of a specific component.

Command Syntax

:LABEL:[location]:”[text]”

Variable Description

[text]
A string of ASCII characters to be set as an easy
identification label for the component. Up to 24
characters allowed.

Return String

[status]

Variable Value Description
[status] 0 - Failed Command failed (switch not set)
 1 - Success Command completed successfully

Examples

String to Send String Returned
:LABEL:1A:”Input_SPDT_1” 1 - Success
:LABEL:1:”Input_SP4T_1” 1 - Success

DLL Implementation: Send_SCPI(":LABEL:1A:”Input_SPDT_1”", RetStr)

HTTP Implementation: http://10.10.10.10/:LABEL:1A:”Input_SPDT_1”

See Also

Get Component Label

Test Solutions - Programming Manual Page 70
Modular Test Systems 19-Oct-17 (A9)

3.9 (b) - Get Component Label

Description

Get the custom label of a specific component (used for easy identification).

Command Syntax

:LABEL:[location]?

Return String

LABEL=”[text]”

Variable Description

[text]
The component label as a string of up to 24 ASCII
characters

Examples

String to Send String Returned
:LABEL:1A? LABEL=”Input_SPDT_1”
:LABEL:1? LABEL=”Input_SP4T_1”

DLL Implementation: Send_SCPI(":LABEL:1A?", RetStr)

HTTP Implementation: http://10.10.10.10/:LABEL:1A?

See Also

Set Component Label

Test Solutions - Programming Manual Page 71
Modular Test Systems 19-Oct-17 (A9)

3.10 - SCPI - Ethernet Configuration Commands
These functions apply RCM and ZTM Series models with firmware C2 or later.

 Description Command/Query

a Set Static IP Address :ETHERNET:CONFIG:IP:[ip]

b Get Static IP Address :ETHERNET:CONFIG:IP?

c Set Static Subnet Mask :ETHERNET:CONFIG:SM:[mask]

d Get Static Subnet Mask :ETHERNET:CONFIG:SM?

e Set Static Network Gateway :ETHERNET:CONFIG:NG:[gateway]

f Get Static Network Gateway :ETHERNET:CONFIG:NG?

g Set HTTP Port :ETHERNET:CONFIG:HTPORT:[port]

h Get HTTP Port :ETHERNET:CONFIG:HTPORT?

i Set Telnet Port :ETHERNET:CONFIG:TELNETPORT:[port]

j Get Telnet Port :ETHERNET:CONFIG:TELNETPORT?

k Set Password Requirement :ETHERNET:CONFIG:PWDENABLED:[enabled]

l Get Password Requirement :ETHERNET:CONFIG:PWDENABLED?

m Set Password :ETHERNET:CONFIG:PWD:[pwd]

n Get Password :ETHERNET:CONFIG:PWD?

o Set DHCP Status :ETHERNET:CONFIG:DHCPENABLED:[enabled]

p Get DHCP Status :ETHERNET:CONFIG:DHCPENABLED?

q Get MAC Address :ETHERNET:CONFIG:MAC?

r
Get Current Ethernet

Configuration
:ETHERNET:CONFIG:LISTEN?

s Update Ethernet Settings :ETHERNET:CONFIG:INIT

Test Solutions - Programming Manual Page 72
Modular Test Systems 19-Oct-17 (A9)

3.10 (a) - Set Static IP Address

Description

Sets the IP address to be used by the system for Ethernet communication when using static
IP settings. DHCP must be disabled for this setting to apply, otherwise a dynamic IP address
will be in use. Changes to the Ethernet configuration only take effect after the Update
Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:IP:[ip]

Variable Description

[ip]
The static IP address to be used by the system; must
be valid and available on the network

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:IP:192.100.1.1 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:IP:192.100.1.1

See Also

Get Static IP Address
Set Static Subnet Mask
Set Static Network Gateway
Update Ethernet Settings

Test Solutions - Programming Manual Page 73
Modular Test Systems 19-Oct-17 (A9)

3.10 (b) - Get Static IP Address

Description

Returns the IP address to be used by the system for Ethernet communication when static IP
settings are in use. DHCP must be disabled for this setting to apply, otherwise a dynamic IP
address will be in use.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:IP?

Return String

[ip]

Variable Description
[ip] The static IP address to be used by the system

Examples

String to Send String Returned
:ETHERNET:CONFIG:IP? 192.100.1.1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:IP?

See Also

Set Static IP Address
Get Static Subnet Mask
Get Static Network Gateway
Get Current Ethernet Configuration

Test Solutions - Programming Manual Page 74
Modular Test Systems 19-Oct-17 (A9)

3.10 (c) - Set Static Subnet Mask

Description

Sets the subnet mask to be used by the system for Ethernet communication when using
static IP settings. DHCP must be disabled for this setting to apply, otherwise a dynamic IP
address will be in use. Changes to the Ethernet configuration only take effect after the
Update Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:SM:[mask]

Variable Description
[mask] The subnet mask for communication on the network

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:SM:255.255.255.0 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:SM:255.255.255.0

See Also

Set Static IP Address
Get Static Subnet Mask
Set Static Network Gateway
Update Ethernet Settings

Test Solutions - Programming Manual Page 75
Modular Test Systems 19-Oct-17 (A9)

3.10 (d) - Get Static Subnet Mask

Description

Returns the subnet mask to be used by the system for Ethernet communication when static
IP settings are in use. DHCP must be disabled for this setting to apply, otherwise a dynamic
IP address will be in use.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:SM?

Return String

[mask]

Variable Description
[mask] The subnet mask for communication on the network

Examples

String to Send String Returned
:ETHERNET:CONFIG:SM? 255.255.255.0

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:SM?

See Also

Get Static IP Address
Set Static Subnet Mask
Get Static Network Gateway
Get Current Ethernet Configuration

Test Solutions - Programming Manual Page 76
Modular Test Systems 19-Oct-17 (A9)

3.10 (e) - Set Static Network Gateway

Description

Sets the IP address of the network gateway to be used by the system for Ethernet
communication when using static IP settings. DHCP must be disabled for this setting to
apply, otherwise a dynamic IP address will be in use. Changes to the Ethernet configuration
only take effect after the Update Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:NG:[gateway]

Variable Description
[gateway] IP address of the network gateway

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:NG:192.100.1.0 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:NG:192.168.100.1.0

See Also

Set Static IP Address
Set Static Subnet Mask
Get Static Network Gateway
Update Ethernet Settings

Test Solutions - Programming Manual Page 77
Modular Test Systems 19-Oct-17 (A9)

3.10 (f) - Get Static Network Gateway

Description

Returns the IP address of the network gateway to be used by the system for Ethernet
communication when static IP settings are in use. DHCP must be disabled for this setting to
apply, otherwise a dynamic IP address will be in use.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:NG?

Return String

[gateway]

Variable Description
[gateway] IP address of the network gateway

Examples

String to Send String Returned
:ETHERNET:CONFIG:NG? 192.168.1.0

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:NG?

See Also

Get Static IP Address
Get Static Subnet Mask
Set Static Network Gateway
Get Current Ethernet Configuration

Test Solutions - Programming Manual Page 78
Modular Test Systems 19-Oct-17 (A9)

3.10 (g) - Set HTTP Port

Description

Sets the IP port to be used for HTTP communication. Changes to the Ethernet configuration
only take effect after the Update Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:HTPORT:[port]

Variable Description

[port]

IP port to be used for HTTP communication. The port
will need to be included in all HTTP commands if any
other than the default port 80 is selected.

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:HTPORT:8080 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:HTPORT:8080

See Also

Get HTTP Port
Set Telnet Port
Update Ethernet Settings

Test Solutions - Programming Manual Page 79
Modular Test Systems 19-Oct-17 (A9)

3.10 (h) - Get HTTP Port

Description

Gets the IP port to be used for HTTP communication.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:HTPORT?

Return String

[port]

Variable Description
[port] IP port to be used for HTTP communication

Examples

String to Send String Returned
:ETHERNET:CONFIG:HTPORT? 8080

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:HTPORT?

See Also

Set HTTP Port
Get Telnet Port

Test Solutions - Programming Manual Page 80
Modular Test Systems 19-Oct-17 (A9)

3.10 (i) - Set Telnet Port

Description

Sets the IP port to be used for Telnet communication. Changes to the Ethernet configuration
only take effect after the Update Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:TELNETPORT:[port]

Variable Description

[port]

IP port to be used for Telnet communication. The port
will need to be included when initiating a Telnet
session if other than the default port 23 is selected.

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:TELNETPORT:21 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:TELNETPORT:21

See Also

Set HTTP Port
Get Telnet Port
Update Ethernet Settings

Test Solutions - Programming Manual Page 81
Modular Test Systems 19-Oct-17 (A9)

3.10 (j) - Get Telnet Port

Description

Gets the IP port to be used for Telnet communication.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:TELNETPORT?

Return String

[port]

Variable Description
[port] IP port to be used for Telnet communication

Examples

String to Send String Returned
:ETHERNET:CONFIG:TELNETPORT? 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:TELNETPORT?

See Also

Get HTTP Port
Set Telnet Port

Test Solutions - Programming Manual Page 82
Modular Test Systems 19-Oct-17 (A9)

3.10 (k) - Set Password Requirement

Description

Sets whether or not a password is required for Ethernet communication. Changes to the
Ethernet configuration only take effect after the Update Ethernet Settings command has
been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:PWDENABLED:[enabled]

Variable Value Description
[enabled] 0 Password not required for Ethernet communication
 1 Password required for Ethernet communication

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:PWDENABLED:1 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:PWDENABLED:1

See Also

Get Password Requirement
Set Password
Get Password
Update Ethernet Settings

Test Solutions - Programming Manual Page 83
Modular Test Systems 19-Oct-17 (A9)

3.10 (l) - Get Password Requirement

Description

Indicates whether or not a password is required for Ethernet communication.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:PWDENABLED?

Return String

[enabled]

Variable Value Description
[enabled] 0 Password not required for Ethernet communication
 1 Password required for Ethernet communication

Examples

String to Send String Returned
:ETHERNET:CONFIG:PWDENABLED? 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:PWDENABLED?

See Also

Set Password Requirement
Set Password
Get Password

Test Solutions - Programming Manual Page 84
Modular Test Systems 19-Oct-17 (A9)

3.10 (m) - Set Password

Description

Sets the password for Ethernet communication. The password will only be required for
communication with the device when password security is enabled. Changes to the Ethernet
configuration only take effect after the Update Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:PWD:[pwd]

Variable Description

[pwd]
Password to set for Ethernet communication (not case
sensitive)

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:PWD:PASS-123 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:PWD:PASS-123

See Also

Set Password Requirement
Get Password Requirement
Get Password
Update Ethernet Settings

Test Solutions - Programming Manual Page 85
Modular Test Systems 19-Oct-17 (A9)

3.10 (n) - Get Password

Description

Returns the password for Ethernet communication. The password will only be required for
communication with the device when password security is enabled

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:PWD?

Return String

[pwd]

Variable Description

[pwd]
Password for Ethernet communication (not case
sensitive)

Examples

String to Send String Returned
:ETHERNET:CONFIG:PWD? PASS-123

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:PWD?

See Also

Set Password Requirement
Get Password Requirement
Set Password

Test Solutions - Programming Manual Page 86
Modular Test Systems 19-Oct-17 (A9)

3.10 (o) - Set DHCP Status

Description

Enables or disables DHCP (Dynamic Host Control Protocol). When enabled the system will
request a valid IP address from the network's DHCP server. When disabled, the system’s
static IP settings will be used. Changes to the Ethernet configuration only take effect after
the Update Ethernet Settings command has been issued.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:DHCPENABLED:[enabled]

Variable Value Description
[enabled] 0 DHCP disabled (static IP settings will be used)

 1
DHCP enabled (IP address will be requested from
DHCP server on the network)

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:DHCPENABLED:1 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:DHCPENABLED:1

See Also

Set Static IP Address
Get DHCP Status
Update Ethernet Settings

Test Solutions - Programming Manual Page 87
Modular Test Systems 19-Oct-17 (A9)

3.10 (p) - Get DHCP Status

Description

Indicates whether or not DHCP (Dynamic Host Control Protocol) is enabled. When enabled
the system will request a valid IP address from the network's DHCP server. When disabled,
the system's static IP settings will be used.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:DHCPENABLED?

Return String

[enabled]

Variable Value Description
[enabled] 0 DHCP disabled (static IP settings will be used)

 1
DHCP enabled (IP address will be requested from
DHCP server on the network)

Examples

String to Send String Returned
:ETHERNET:CONFIG:DHCPENABLED? 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:DHCPENABLED?

See Also

Set Static IP Address
Set DHCP Status
Get Current Ethernet Configuration

Test Solutions - Programming Manual Page 88
Modular Test Systems 19-Oct-17 (A9)

3.10 (q) - Get MAC Address

Description

Returns the MAC (Media Access Control) address of the system (a physical hardware
address).

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:MAC?

Return String

[mac]

Variable Description
[mac] MAC address of the system

Examples

String to Send String Returned
:ETHERNET:CONFIG:MAC? D0-73-7F-82-D8-01

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:MAC?

See Also

Get Static IP Address
Get Static Subnet Mask
Get Static Network Gateway
Get Current Ethernet Configuration

Test Solutions - Programming Manual Page 89
Modular Test Systems 19-Oct-17 (A9)

3.10 (r) - Get Current Ethernet Configuration

Description

Returns the Ethernet configuration (IP address, subnet mask and network gateway) that is
currently active for the device. If DHCP is enabled this will be the settings issued dynamically
by the network's DHCP server. If DHCP is disabled this will be the user configured static IP
settings.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:LISTEN?

Return String

[ip];[mask];[gateway]

Variable Description
[ip] Active IP address of the device
[mask] Subnet mask for the network
[gateway] IP address of the network gateway

Examples

String to Send String Returned
:ETHERNET:CONFIG:LISTEN? 192.100.1.1;255.255.255.0;192.100.1.0

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:LISTEN?

See Also

Get Static IP Address
Get Static Subnet Mask
Get Static Network Gateway
Update Ethernet Settings

Test Solutions - Programming Manual Page 90
Modular Test Systems 19-Oct-17 (A9)

3.10 (s) - Update Ethernet Settings

Description

Resets the Ethernet controller so that any recently applied changes to the Ethernet
configuration can be loaded. Any subsequent commands / queries to the system will need to
be issued using the new Ethernet configuration.

Note: If a connection cannot be established after the INIT command has been issued it may
indicate an invalid configuration was created (for example a static IP address which clashes
with another device on the network). The Ethernet settings can always be overwritten by
connecting to the system using the USB connection.

Requirements

Firmware C2 or later.

Command Syntax

:ETHERNET:CONFIG:INIT

Return String

[status]

Variable Value Description
[status] 0 Command failed
 1 Command completed successfully

Examples

String to Send String Returned
:ETHERNET:CONFIG:INIT 1

HTTP Implementation:

http://10.10.10.10/:ETHERNET:CONFIG:INIT

See Also

Get Current Ethernet Configuration

Test Solutions - Programming Manual Page 91
Modular Test Systems 19-Oct-17 (A9)

4 - Operating in a Windows Environment via USB

4.1 - The DLL (Dynamic Link Library) Concept

The Dynamic Link Library concept is Microsoft's implementation of the shared library
concept in the Windows environment.

DLLs provide a mechanism for shared code and data, intended to allow a developer to
distribute applications without requiring code to be re-linked or recompiled.

Mini-Circuits' software package provides DLL objects designed to allow your own application
to interface with the functions of the ZTM Series test system.

The software package provides two DLL files, the choice of which file to use is dictated by the
user’s operating system:

1. ActiveX com object

Designed to be used in any programming environment that supports third party
ActiveX COM (Component Object Model) compliant applications.
The ActiveX file should be registered using RegSvr32 (see following sections for
details).

2. Microsoft.NET Class Library

A logical unit of functionality that runs under the control of the Microsoft.NET
system.

User’s Software Application
(3rd party software such as LabVIEW, Delphi, Visual C++,

Visual C#, Visual Basic, and Microsoft.Net)

DLL (Dynamic Link Libraries)

Mini-Circuits’
USB Portable Test Equipment

Fig 4.1-a: DLL Interface Concept

Test Solutions - Programming Manual Page 92
Modular Test Systems 19-Oct-17 (A9)

4.1 (a) - ActiveX COM Object

ActiveX COM object DLL files are designed to be used with both 32-bit and 64-bit Windows
operating systems. A 32-bit programming environment that is compatible with ActiveX is
required. To develop 64-bit applications, the Microsoft.NET Class library should be used
instead.

Supported Programming Environments

Mini-Circuits’ ZTM & RCM Series test systems have been tested in the following
programming environments. This is not an exhaustive list and the DLL file is designed to
operate in most environments that support ActiveX functionality. Please contact Mini-
Circuits for support.

 Visual Studio® 6 (Visual C++ and Visual Basic)

 LabVIEW 8.0 or newer

 MATLAB 7 or newer

 Delphi

 Borland C++

 Agilent VEE

 Python

Installation

1. Copy the DLL file to the correct directory:
For 32-bit Windows operating systems this is C:\WINDOWS\System32
For 64-bit Windows operating systems this is C:\WINDOWS\SysWOW64

2. Open the Command Prompt:
a. For Windows XP® (see Fig 4.1-b):

i. Select “All Programs” and then “Accessories” from the Start Menu
ii. Click on “Command Prompt” to open

b. For later versions of the Windows operating system you will need to have
Administrator privileges in order to run the Command Prompt in “Elevated”
mode (see Fig 4.1-c for Windows 7 and Windows 8):

i. Open the Start Menu/Start Screen and type “Command Prompt”
ii. Right-click on the shortcut for the Command Prompt

iii. Select “Run as Administrator”
iv. You may be prompted to enter the log in details for an Administrator

account if the current user does not have Administrator privileges on the
local PC

3. Use regsvr32 to register the DLL:
For 32-bit Windows operating systems type (see Fig 4.1-d):

\WINDOWS\System32\Regsvr32 \WINDOWS\System32\modularzt.dll

For 64-bit Windows operating systems type (see Fig 4.1-e):
\WINDOWS\SysWOW64\Regsvr32 \WINDOWS\SysWOW64\modularzt.dll

4. Hit enter to confirm and a message box will appear to advise of successful registration.

Test Solutions - Programming Manual Page 93
Modular Test Systems 19-Oct-17 (A9)

Fig 4.1-b: Opening the Command Prompt in Windows XP

Fig 4.1-c: Opening the Command Prompt in Windows 7 (left) and Windows 8 (right)

Fig 4.1-d: Registering the DLL in a 32-bit environment

Fig 4.1-e: Registering the DLL in a 64-bit environment

Test Solutions - Programming Manual Page 94
Modular Test Systems 19-Oct-17 (A9)

4.1 (b) - Microsoft.NET Class Library

Microsoft.NET class libraries are designed to be used with both 32-bit and 64-bit Windows
operating systems. To develop 64-bit applications the user must have both a 64-bit
operating system and 64-bit programming environment. However, the Microsoft.NET class
library is also compatible with 32-bit programming environments.

Supported Programming Environments

Mini-Circuits’ ZTM & RCM Series test systems have been tested in the following
programming environments. This is not an exhaustive list and the DLL file is designed to
operate in most environments that support Microsoft.NET functionality. Please contact
Mini-Circuits for support.

 National Instruments CVI

 Microsoft.NET (Visual C++, Visual Basic.NET, Visual C# 2003 or newer)

 LabVIEW 2009 or newer

 MATLAB 2008 or newer

 Delphi

 Borland C++

Installation

1. Copy the DLL file to the correct directory
a. For 32 bit Windows operating systems this is C:\WINDOWS\System32
b. For 64 bit Windows operating systems this is C:\WINDOWS\SysWOW64

2. No registration is required

Test Solutions - Programming Manual Page 95
Modular Test Systems 19-Oct-17 (A9)

4.2 - Referencing the DLL (Dynamic Linked Library)

In order to use the DLL functionality, some programming environments will require the user
to set a reference to the relevant DLL file. Once this is done, the user just needs to declare a
new instance of the USB Control class (defined within the DLL) for each modular test system
to be controlled. The class is assigned to a variable which is used to call the DLL functions as
needed. In the following examples, the variable names MyPTE1 and MyPTE2 have been used
to represent 2 connected modular test systems.

Example Declarations using the ActiveX DLL (modularzt.dll)

Example Declarations using the .NET DLL (modularzt64.dll)

Visual Basic
Public MyPTE1 As New ModularZT.USB_Control

 ' Declare new ZTM / RCM Series control object, assign to MyPTE1

Public MyPTE2 As New ModularZT.USB_Control

 ' Declare new ZTM / RCM Series control object, assign to MyPTE2

Visual C++
ModularZT::USB_Control ^MyPTE1 = gcnew ModularZT::USB_Control();

// Declare new ZTM / RCM Series control object, assign to MyPTE1

ModularZT::USB_Control ^MyPTE2 = gcnew ModularZT::USB_Control();

// Declare new ZTM / RCM Series control object, assign to MyPTE2
Visual C#

public ModularZT.USB_Control MyPTE1 = new ModularZT.USB_Control();

// Declare new ZTM / RCM Series control object, assign to MyPTE1

public ModularZT.USB_Control MyPTE2 = new ModularZT.USB_Control();

// Declare new ZTM / RCM Series control object, assign to MyPTE2

Matlab
MyPTE1 = actxserver('ModularZT.USB_Control')

 % Initialize new ZTM / RCM Series control object, MyPTE1

MyPTE2 = actxserver('ModularZT.USB_Control')

 % Initialize new ZTM / RCM Series control object, MyPTE2

Visual Basic
Public MyPTE1 As New ModularZT64.USB_ZT

 ' Declare new ZTM / RCM Series control object, assign to MyPTE1

Public MyPTE2 As New ModularZT64.USB_ZT

 ' Declare new ZTM / RCM Series control object, assign to MyPTE2

Visual C++
ModularZT64.USB_ZT ^MyPTE1 = gcnew ModularZT64.USB_ZT();

// Declare new ZTM / RCM Series control object, assign to MyPTE1

ModularZT64.USB_ZT ^MyPTE2 = gcnew ModularZT64.USB_ZT();

// Declare new ZTM / RCM Series control object, assign to MyPTE2
Visual C#

public ModularZT64.USB_ZT MyPTE1 = new ModularZT64.USB_ZT();

// Declare new ZTM / RCM Series control object, assign to MyPTE1

public ModularZT64.USB_ZT MyPTE2 = new ModularZT64.USB_ZT();

// Declare new ZTM / RCM Series control object, assign to MyPTE2

Matlab
MCL_ATT=NET.addAssembly('C:\Windows\SysWOW64\ModularZT64.dll')

MyPTE1 = ModularZT64.USB_ZT % Initialize new ZTM / RCM object

MyPTE1 = ModularZT64.USB_ZT % Initialize new ZTM / RCM object

Test Solutions - Programming Manual Page 96
Modular Test Systems 19-Oct-17 (A9)

4.3 - Summary of DLL Functions

The following functions are defined in both the ActiveX and .Net DLL files. Please see the
following sections for a full description of their structure and implementation.

4.3 (a) - USB Control Functions

a) Short Connect (Optional String SN)
b) Short ConnectByAddress (Optional Short Address)
c) Void Disconnect ()
d) Short Read_ModelName (String ModelName)
e) Short Read_SN (String SN)
f) Short Set_Address (Short Address)
g) Short Get_Address ()
h) Short Get_Available_SN_List (String SN_List)
i) Short Get_Available_Address_List (String Add_List)
j) Short GetConnectionStatus ()
k) Short GetUSBConnectionStatus ()
l) Short Send_SCPI (String SndSTR, String RetSTR)
m) Short GetExtFirmware (Short A0, Short A1, Short A2, String Firmware)
n) Short GetFirmware ()

4.3 (b) - Ethernet Configuration Functions

a) Short GetEthernet_CurrentConfig (Int IP1, Int IP2, Int IP3, Int IP4, Int Mask1, Int Mask2,

Int Mask3, Int Mask4, Int Gateway1, Int Gateway2, Int Gateway3, Int Gateway4)
b) Short GetEthernet_IPAddress (Int b1, Int b2, Int b3, Int b4)
c) Short GetEthernet_MACAddress (Int MAC1 , Int MAC2, Int MAC3, Int MAC4, Int MAC5,

Int MAC6)
d) Short GetEthernet_NetworkGateway (Int b1, Int b2, Int b3, Int b4)
e) Short GetEthernet_SubNetMask (Int b1, Int b2, Int b3, Int b4)
f) Short GetEthernet_TCPIPPort (Int port)
g) Short GetEthernet_UseDHCP ()
h) Short GetEthernet_UsePWD ()
i) Short GetEthernet_PWD (string Pwd)
j) Short SaveEthernet_IPAddress (Int b1, Int b2, Int b3, Int b4)
k) Short SaveEthernet_NetworkGateway (Int b1, Int b2, Int b3, Int b4)
l) Short SaveEthernet_SubnetMask (Int b1, Int b2, Int b3, Int b4)
m) Short SaveEthernet_TCPIPPort (Int port)
n) Short SaveEthernet_UseDHCP (Int UseDHCP)
o) Short SaveEthernet_UsePWD (Int UsePwd)
p) Short SaveEthernet_PWD (String Pwd)
q) Int SaveEthernet_PromptMN(Int Enable_Prompt)
r) Int GetEthernet_PromptMN()

Test Solutions - Programming Manual Page 97
Modular Test Systems 19-Oct-17 (A9)

4.4 - DLL Functions for USB Control

These functions apply to all Mini-Circuits ZTM & RCM Series systems and provide a means to
control the device over a USB connection.

4.4 (a) - Connect by Serial Number

Declaration

 Short Connect(Optional String SN)

Description

Initializes the USB connection. If multiple modular test systems are connected to the same
host computer, then the serial number should be included, otherwise this can be omitted.
The system should be disconnected on completion of the program using the Disconnect
function.

Parameters

Data Type Variable Description

String SN Optional. The serial number of the test system. Can be
omitted if only one modular test system is connected.

Return Values

Data Type Value Description

Short 0 No connection was possible

 1 Connection successfully established

 2 Connection already established (Connect has been called
more than once). The system will continue to operate
normally.

Examples

See Also

Connect by Address
Disconnect

Visual Basic
status = MyPTE1.Connect(SN)

Visual C++
status = MyPTE1->Connect(SN);

Visual C#
status = MyPTE1.Connect(SN);

Matlab
status = MyPTE1.Connect(SN)

Test Solutions - Programming Manual Page 98
Modular Test Systems 19-Oct-17 (A9)

4.4 (b) - Connect by Address

Declaration

 Short ConnectByAddress(Optional Short Address)

Description

This function is called to initialize the USB connection to a modular test system by referring
to a user defined address. The address is an integer number from 1 to 255 which can be
assigned using the Set_Address function (the factory default is 255). The connection process
can take a few milliseconds so it is recommended that the connection be made once at the
beginning of the routine and left open until the test sequence is no completed. The system
should be disconnected on completion of the program using the Disconnect function.

Parameters

Data Type Variable Description

Short Address Optional. The address of the system. Can be omitted if only
one modular test system is connected.

Return Values

Data Type Value Description

Short 0 No connection was possible

 1 Connection successfully established

 2 Connection already established (Connect has been called
more than once)

Examples

See Also

Connect by Serial Number
Disconnect

Visual Basic
status = MyPTE1.ConnectByAddress(5)

Visual C++
status = MyPTE1->ConnectByAddress(5);

Visual C#
status = MyPTE1.ConnectByAddress(5);

Matlab
status = MyPTE1.connectByAddress(5)

Test Solutions - Programming Manual Page 99
Modular Test Systems 19-Oct-17 (A9)

4.4 (c) - Disconnect

Declaration

 Void Disconnect()

Description

This function is called to close the connection to modular test system after completion of the
test sequence. It is strongly recommended that this function is used prior to ending the
program. Failure to do so may result in a connection problem with the device. Should this
occur, shut down the program and unplug the system from the computer, then reconnect to
start again.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

None

Examples

See Also

Connect by Serial Number
Connect by Address

Visual Basic
MyPTE1.Disconnect()

Visual C++
MyPTE1->Disconnect();

Visual C#
MyPTE1.Disconnect();

Matlab
MyPTE1.Disconnect

Test Solutions - Programming Manual Page 100
Modular Test Systems 19-Oct-17 (A9)

4.4 (d) - Read Model Name

Declaration

 Short Read_ModelName(String ModelName)

Description

This function is called to determine the full Mini-Circuits part number of the connected
modular test system. The user passes a string variable which is updated with the part
number.

Parameters

Data Type Variable Description

String ModelName Required. A string variable that will be updated with the Mini-
Circuits part number for the modular test system.

Return Values

Data Type Value Description

Short 0 Command failed

 1 Command completed successfully

Examples

See Also

Read Serial Number
SCPI: Get Model Name

Visual Basic
If MyPTE1.Read_ModelName(ModelName) > 0 Then

 MsgBox ("The connected system is " & ModelName)

 ' Display a message stating the model name

End If
Visual C++

if (MyPTE1->Read_ModelName(ModelName) > 0)

{

 MessageBox::Show("The connected system is " + ModelName);

 // Display a message stating the model name

}
Visual C#

if (MyPTE1.Read_ModelName(ref(ModelName)) > 0)

{

 MessageBox.Show("The connected system is " + ModelName);

 // Display a message stating the model name

}
Matlab

[status, ModelName] = MyPTE1.Read_ModelName(ModelName)

if status > 0

 h = msgbox('The connected switch is ', ModelName)

 % Display a message stating the model name

end

Test Solutions - Programming Manual Page 101
Modular Test Systems 19-Oct-17 (A9)

4.4 (e) - Read Serial Number

Declaration

 Short Read_SN(String SN)

Description

This function is called to determine the serial number of the connected modular test system.
The user passes a string variable which is updated with the serial number.

Parameters

Data Type Variable Description

String ModelName Required. String variable that will be updated with the Mini-
Circuits serial number for the test system.

Return Values

Data Type Value Description

Short 0 Command failed

 1 Command completed successfully

Examples

See Also

Read Model Name
SCPI: Get Serial Number

Visual Basic
If MyPTE1.Read_SN(SN) > 0 Then

 MsgBox (“The connected system is “ & SN)

 ' Display a message stating the serial number

End If
Visual C++

if (MyPTE1->Read_SN(SN) > 0)

{

 MessageBox::Show("The connected system is " + SN);

 // Display a message stating the serial number

}
Visual C#

if (MyPTE1.Read_SN(ref(SN)) > 0)

{

 MessageBox.Show("The connected system is " + SN);

 // Display a message stating the serial number

}
Matlab

[status, SN] = MyPTE1.Read_SN(SN)

if status > 0

 h = msgbox('The connected switch is ', SN)

 % Display a message stating the serial number

 end

Test Solutions - Programming Manual Page 102
Modular Test Systems 19-Oct-17 (A9)

4.4 (f) - Set USB Address

Declaration

 Short Set_Address(Short Address)

Description

This function allows the internal address of the connected modular test system to be
changed from the factory default of 255. The system can be referred to by the address
instead of the serial number (see Connect by Address).

Parameters

Data Type Variable Description

Short Address Required. An integer value from 1 to 255

Return Values

Data Type Value Description

Short 0 Command failed

 1 Command completed successfully

Example

See Also

Get USB Address
Get List of Available Addresses

Visual Basic
status = MyPTE1.Set_Address(1)

Visual C++
status = MyPTE1->Set_Address(1);

Visual C#
status = MyPTE1.Set_Address(1);

Matlab
status = MyPTE1.Set_Address(1)

Test Solutions - Programming Manual Page 103
Modular Test Systems 19-Oct-17 (A9)

4.4 (g) - Get USB Address

Declaration

 Short Get_Address()

Description

This function returns the address of the connected modular test system.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

Short 0 Command failed

Short 1-255 Address of the modular test system

Examples

See Also

Set USB Address
Get List of Available Addresses

Visual Basic
addr = MyPTE1.Get_Address()

Visual C++
addr = MyPTE1->Get_Address();

Visual C#
addr = MyPTE1.Get_Address();

Matlab
addr = MyPTE1.Get_Address

Test Solutions - Programming Manual Page 104
Modular Test Systems 19-Oct-17 (A9)

4.4 (h) - Get List of Connected Serial Numbers

Declaration

 Short Get_Available_SN_List(String SN_List)

Description

This function takes a user defined variable and updates it with a list of serial numbers for all
available (currently connected) modular test systems.

Parameters

Data Type Variable Description

String SN_List Required. String variable which will be updated with a list of
all available serial numbers, separated by a single space
character; for example “11301020001 11301020002
11301020003”.

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Connect by Serial Number
Get List of Available Addresses

Visual Basic
If MyPTE1.Get_Available_SN_List(SN_List) > 0 Then

 array_SN() = Split(SN_List, " ")

 ' Split the list into an array of serial numbers

 For i As Integer = 0 To array_SN.Length - 1

 ' Loop through the array and use each serial number

 Next

End If
Visual C++

if (MyPTE1 ->Get_Available_SN_List(SN_List) > 0)

{

 // split the List into array of SN's

}
Visual C#

if (MyPTE1.Get_Available_SN_List(ref(SN_List)) > 0)

{

 // split the List into array of SN's

}
Matlab

[status, SN_List] = MyPTE1.Get_Available_SN_List(SN_List)

if status > 0

 % split the List into array of SN's

end

Test Solutions - Programming Manual Page 105
Modular Test Systems 19-Oct-17 (A9)

4.4 (i) - Get List of Available Addresses

Declaration

 Short Get_Available_Address_List(String Add_List)

Description

This function takes a user defined variable and updates it with a list of addresses of all
connected modular test systems.

Parameters

Data Type Variable Description

String Add_List Required. String variable which the function will update with
a list of addresses separated by a single space character, for
example, “5 101 254 255”

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Connect by Address
Get List of Connected Serial Numbers

Visual Basic
If MyPTE1.Get_Available_Add_List(st_Ad_List) > 0 Then

 ' Get list of available addresses

 array_Ad() = Split(st_Ad_List, " ")

 ' Split the list into an array of addresses

 For i As Integer = 0 To array_Ad.Length - 1

 ' Loop through the array and use each address

 Next

End If
Visual C++

if (MyPTE1->Get_Available_Address_List(Add_List) > 0);

{ // split the List into array of Addresses

}
Visual C#

if (MyPTE1.Get_Available_Address_List(ref(Add_List)) > 0)

{ // split the List into array of Addresses

}
Matlab

[status, Add_List] = MyPTE1.Get_Available_Address_List(Add_List)

if status > 0

 % split the List into array of Addresses

end

Test Solutions - Programming Manual Page 106
Modular Test Systems 19-Oct-17 (A9)

4.4 (j) - Get Software Connection Status

Declaration

 Short GetConnectionStatus()

Description

This function checks whether there is an open software connection to the modular test
system. This will be true if the Connect function (or similar) has previously been called.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

Short 0 No connection

Short 1 ZTM Series is connected

Examples

See Also

Get USB Connection Status

Visual Basic
Status = MyPTE1.GetConnectionStatus()

Visual C++
Status = MyPTE1->GetConnectionStatus();

Visual C#
Status = MyPTE1.GetConnectionStatus();

Matlab
Status = MyPTE1.GetConnectionStatus()

Test Solutions - Programming Manual Page 107
Modular Test Systems 19-Oct-17 (A9)

4.4 (k) - Get USB Connection Status

Declaration

 Short GetUSBConnectionStatus()

Description

This function checks whether the USB connection to the modular test is still active.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

Short 0 No connection

Short 1 USB connection to modular test system is active

Examples

See Also

Get Software Connection Status

Visual Basic
If MyPTE1.GetUSBConnectionStatus = 1 Then

 ' Modular test system is connected

End If
Visual C++

if (MyPTE1->GetUSBConnectionStatus() == 1)

{

 // Modular test system is connected

}
Visual C#

if (MyPTE1.GetUSBConnectionStatus() == 1)

{

 // Modular test system is connected

}
Matlab

usbstatus = MyPTE1.GetUSBConnectionStatus

if usbstatus == 1

 % Modular test system is connected

end

Test Solutions - Programming Manual Page 108
Modular Test Systems 19-Oct-17 (A9)

4.4 (l) - Send SCPI Command

Declaration

 Short Send_SCPI(String SndSTR, String RetSTR)

Description

This function sends a SCPI command to the test system and collects the returned
acknowledgement. SCPI (Standard Commands for Programmable Instruments) is a common
method for communicating with and controlling instrumentation products and provides the
main method for interfacing with the modular test system’s internal test components.

Parameters

Data Type Variable Description

String SndSTR Required. The SCPI command to send.

String RetSTR Required. User defined string which will be updated with the
value returned from the test system.

Return Values

Data Type Value Description

Short 0 Command failed

 1 Command completed successfully

Examples

See Also

SCPI Command Set for Control of ZTM-X Components

Visual Basic
Status = MyPTE1.Send_SCPI("RUDAT:1A:ATT:75.75", RetStr)

 ' Set attenuator in slot 1A to 75.75dB

Visual C++
Status = MyPTE1->Send_SCPI("RUDAT:1A:ATT:75.75", RetStr);

 // Set attenuator in slot 1A to 75.75dB

Visual C#
Status = MyPTE1.Send_SCPI("RUDAT:1A:ATT:75.75", RetStr);

 // Set attenuator in slot 1A to 75.75dB

Matlab
[Status, RetStr] = MyPTE1.Send_SCPI("RUDAT:1A:ATT:75.75", RetStr)

 % Set attenuator in slot 1A to 75.75dB

Test Solutions - Programming Manual Page 109
Modular Test Systems 19-Oct-17 (A9)

4.4 (m) - Get Firmware

Declaration

 Short GetExtFirmware(Short A0, Short A1, Short A2, String Firmware)

Description

This function returns the internal firmware version of the modular test system along with
three reserved variables (for factory use).

Parameters

Data Type Variable Description

Short A0 Required. User defined variable for factory use only.

Short A1 Required. User defined variable for factory use only.

Short A2 Required. User defined variable for factory use only.

String Firmware Required. User defined variable which will be updated with
the current firmware version, for example “B3”.

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Examples

See Also

SCPI: Get Firmware

Visual Basic
If MyPTE1.GetExtFirmware(A0, A1, A2, Firmware) > 0 Then

 MsgBox ("Firmware version is " & Firmware)

End If
Visual C++

if (MyPTE1->GetExtFirmware(A0, A1, A2, Firmware) > 0)

{

 MessageBox::Show("Firmware version is " + Firmware);

}
Visual C#

if (MyPTE1.GetExtFirmware(ref(A0, A1, A2, Firmware)) > 0)

{

 MessageBox.Show("Firmware version is " + Firmware);

}
Matlab

[status, A0, A1, A2, Firmware] = MyPTE1.GetExtFirmware(A0, A1, A2, Firmware)

if status > 0

 h = msgbox('Firmware version is ', Firmware)

end

Test Solutions - Programming Manual Page 110
Modular Test Systems 19-Oct-17 (A9)

4.4 (n) - Get Firmware Version (Antiquated)

Declaration

 Short GetFirmware()

Description

This function is antiquated, GetExtFirmware should be used instead. The function returns a
numeric value corresponding to the internal firmware version of the test system.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

Short Firmware Version number of the firmware

Examples

See Also

Get Firmware

Visual Basic
FW = MyPTE1.GetFirmware()

Visual C++
FW = MyPTE1->GetFirmware();

Visual C#
FW = MyPTE1.GetFirmware();

Matlab
FW = MyPTE1.GetFirmware()

Test Solutions - Programming Manual Page 111
Modular Test Systems 19-Oct-17 (A9)

4.5 - DLL Functions for Ethernet Configuration

These functions provide a means for identifying and configuring the Ethernet settings such as
IP address, TCP/IP port and network gateway. They can only be called while the system is
connected via the USB interface. In order to determine the current connection status (for
example the IP address of the network gateway) the test system must also be connected to
the network via the RJ45 port.

4.5 (a) - Get Ethernet Configuration

Declaration

 Short GetEthernet_CurrentConfig(Int IP1, Int IP2, Int IP3, Int IP4,

Int Mask1, Int Mask2, Int Mask3, Int Mask4,

Int Gateway1, Int Gateway2, Int Gateway3, Int Gateway4)

Description

This function returns the current IP configuration of the connected modular test system in a
series of user defined variables. The settings checked are IP address, subnet mask and
network gateway.

Parameters

Data Type Variable Description

Int IP1 Required. Integer variable which will be updated with the
first (highest order) octet of the IP address.

Int IP2 Required. Integer variable which will be updated with the
second octet of the IP address.

Int IP2 Required. Integer variable which will be updated with the
third octet of the IP address.

Int IP4 Required. Integer variable which will be updated with the
last (lowest order) octet of the IP address.

Int Mask1 Required. Integer variable which will be updated with the
first (highest order) octet of the subnet mask.

Int Mask2 Required. Integer variable which will be updated with the
second octet of the subnet mask.

Int Mask3 Required. Integer variable which will be updated with the
third octet of the subnet mask.

Int Mask4 Required. Integer variable which will be updated with the
last (lowest order) octet of the subnet mask.

Int Gateway1 Required. Integer variable which will be updated with the
first (highest order) octet of the subnet mask.

Int Gateway2 Required. Integer variable which will be updated with the
second octet of the network gateway.

Int Gateway3 Required. Integer variable which will be updated with the
third octet of the network gateway.

Int Gateway4 Required. Integer variable which will be updated with the
last (lowest order) octet of the network gateway.

Test Solutions - Programming Manual Page 112
Modular Test Systems 19-Oct-17 (A9)

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get MAC Address
Get TCP/IP Port

Visual Basic
If MyPTE1.GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4, M1, M2, M3, M4,

_ GW1, GW2, GW3, GW4) > 0 Then

MsgBox ("IP address: " & IP1 & "." & IP2 & "." & IP3 & "." & IP4)

MsgBox ("Subnet Mask: " & M1 & "." & M2 & "." & M3 & "." & M4)

MsgBox ("Gateway: " & GW1 & "." & GW2 & "." & GW3 & "." & GW4)

End If

Visual C++
if (MyPTE1->GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4, M1, M2, M3, M4,

_ GW1, GW2, GW3, GW4) > 0)

{

MessageBox::Show("IP address: " + IP1 + "." + IP2 + "." + IP3 + "."

_ + IP4);

MessageBox::Show("Subnet Mask: " + M1 + "." + M2 + "." + M3+ "." +

_ M4);

MessageBox::Show("Gateway: " + GW1 + "." + GW2 + "." + GW3 + "." +

_ GW4);

}
Visual C#

if (MyPTE1.GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4, M1, M2, M3, M4,

_ GW1, GW2, GW3, GW4) > 0)

{

MessageBox.Show("IP address: " + IP1 + "." + IP2 + "." + IP3 + "."

_ + IP4);

MessageBox.Show("Subnet Mask: " + M1 + "." + M2 + "." + M3+ "." +

_ M4);

MessageBox.Show("Gateway: " + GW1 + "." + GW2 + "." + GW3 + "." +

_ GW4);

}
Matlab

[status, IP1, IP2, IP3, IP4, M1, M2, M3, M4, GW1, GW2, GW3, GW4] =

MyPTE1.GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4, M1, M2, M3, M4, GW1,

GW2, GW3, GW4)

if status > 0

h = msgbox ("IP address: ", IP1, ".", IP2, ".", IP3, ".", IP4)

h = msgbox ("Subnet Mask: ", M1, "." & M2, "." & M3, ".", M4)

h = msgbox ("Gateway: ", GW1, ".", GW2, ".", GW3, ".", GW4)

end

Test Solutions - Programming Manual Page 113
Modular Test Systems 19-Oct-17 (A9)

4.5 (b) - Get IP Address

Declaration

 Short GetEthernet_IPAddress(Int b1, Int b2, Int b3, Int b4)

Description

This function returns the current IP address of the connected system in a series of user
defined variables (one per octet).

Parameters

Data Type Variable Description

Int IP1 Required. Integer variable which will be updated with the
first (highest order) octet of the IP address (for example “192”
for the IP address “192.168.1.0”).

Int IP2 Required. Integer variable which will be updated with the
second octet of the IP address (for example “168” for the IP
address “192.168.1.0”).

Int IP2 Required. Integer variable which will be updated with the
third octet of the IP address (for example “1” for the IP
address “192.168.1.0”).

Int IP4 Required. Integer variable which will be updated with the last
(lowest order) octet of the IP address (for example “0” for the
IP address “192.168.1.0”).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Test Solutions - Programming Manual Page 114
Modular Test Systems 19-Oct-17 (A9)

Example

See Also

Get Ethernet Configuration
Get TCP/IP Port
Save IP Address
Save TCP/IP Port

Visual Basic
If MyPTE1.GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4) > 0 Then

MsgBox ("IP address: " & IP1 & "." & IP2 & "." & IP3 & "." & IP4)

End If

Visual C++
if (MyPTE1->GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4) > 0)

{

MessageBox::Show("IP address: " + IP1 + "." + IP2 + "." + IP3 + "."

_ + IP4);

}
Visual C#

if (MyPTE1.GetEthernet_CurrentConfig(IP1, IP2, IP3, IP4) > 0)

{

MessageBox.Show("IP address: " + IP1 + "." + IP2 + "." + IP3 + "."

_ + IP4);

}
Matlab

[status, IP1, IP2, IP3, IP4] = MyPTE1.GetEthernet_CurrentConfig(IP1, IP2,

IP3, IP4)

if status > 0

h = msgbox ("IP address: ", IP1, ".", IP2, ".", IP3, ".", IP4)

end

Test Solutions - Programming Manual Page 115
Modular Test Systems 19-Oct-17 (A9)

4.5 (c) - Get MAC Address

Declaration

 Short GetEthernet_MACAddress(Int MAC1, Int MAC2, Int MAC3, Int MAC4,

Int MAC5, Int MAC6)

Description

This function returns the MAC (media access control) address, the physical address, of the
connected system as a series of decimal values (one for each of the 6 numeric groups).

Parameters

Data Type Variable Description

Int MAC1 Required. Integer variable which will be updated with the
decimal value of the first numeric group of the MAC address.
For example:
MAC address =11:47:165:103:137:171
MAC1=11

Int MAC2 Required. Integer variable which will be updated with the
decimal value of the second numeric group of the MAC
address.
For example:
MAC address =11:47:165:103:137:171
MAC2=47

Int MAC3 Required. Integer variable which will be updated with the
decimal value of the third numeric group of the MAC address.
For example:
MAC address =11:47:165:103:137:171
MAC3=165

Int MAC4 Required. Integer variable which will be updated with the
decimal value of the fourth numeric group of the MAC
address.
For example:
MAC address =11:47:165:103:137:171
MAC4=103

Int MAC5 Required. Integer variable which will be updated with the
decimal value of the fifth numeric group of the MAC address.
For example:
MAC address =11:47:165:103:137:171
MAC5=137

Int MAC6 Required. Integer variable which will be updated with the
decimal value of the last numeric group of the MAC address.
For example:
MAC address =11:47:165:103:137:171
MAC6=171

Test Solutions - Programming Manual Page 116
Modular Test Systems 19-Oct-17 (A9)

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Ethernet Configuration

Visual Basic
If MyPTE1.GetEthernet_MACAddess(M1, M2, M3, M4, M5, M6) > 0 Then

MsgBox ("MAC address: " & M1 & ":" & M2 & ":" & M3 & ":" & M4 & ":"

_ & M5 & ":" & M6)

End If

Visual C++
if (MyPTE1->GetEthernet_MACAddess(M1, M2, M3, M4, M5, M6) > 0)

{

MessageBox::Show("MAC address: " + M1 + "." + M2 + "." + M3 + "."

_ + M4 + "." + M5 + "." + M6);

}
Visual C#

if (MyPTE1.GetEthernet_MACAddess(M1, M2, M3, M4, M5, M6) > 0)

{

MessageBox.Show("MAC address: " + M1 + "." + M2 + "." + M3 + "."

_ + M4 + "." + M5 + "." + M6);

}
Matlab

[status, M1, M2, M3, M4, M5, M6] = MyPTE1.GetEthernet_MACAddess(M1, M2, M3,

M4, M5, M6)

if status > 0

 h=msgbox("MAC address: ", M1, ".", M2, ".", M3, ".", M4, ".", M5, ".", M6)

end

Test Solutions - Programming Manual Page 117
Modular Test Systems 19-Oct-17 (A9)

4.5 (d) - Get Network Gateway

Declaration

 Short GetEthernet_NetworkGateway(Int b1, Int b2, Int b3, Int b4)

Description

This function returns the IP address of the network gateway to which the system is currently
connected. A series of user defined variables are passed to the function to be updated with
the IP address (one per octet).

Parameters

Data Type Variable Description

Int IP1 Required. Integer variable which will be updated with the
first (highest order) octet of the IP address (for example “192”
for the IP address “192.168.1.0”).

Int IP2 Required. Integer variable which will be updated with the
second octet of the IP address (for example “168” for the IP
address “192.168.1.0”).

Int IP2 Required. Integer variable which will be updated with the
third octet of the IP address (for example “1” for the IP
address “192.168.1.0”).

Int IP4 Required. Integer variable which will be updated with the last
(lowest order) octet of the IP address (for example “0” for the
IP address “192.168.1.0”).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Test Solutions - Programming Manual Page 118
Modular Test Systems 19-Oct-17 (A9)

Example

See Also

Get Ethernet Configuration
Save Network Gateway

Visual Basic
If MyPTE1.GetEthernet_NetworkGateway(IP1, IP2, IP3, IP4) > 0 Then

MsgBox ("Gateway: " & IP1 & "." & IP2 & "." & IP3 & "." & IP4)

End If

Visual C++
if (MyPTE1->GetEthernet_NetworkGateway(IP1, IP2, IP3, IP4) > 0)

{

MessageBox::Show("Gateway: " + IP1 + "." + IP2 + "." + IP3 + "."

_ + IP4);

}
Visual C#

if (MyPTE1.GetEthernet_NetworkGateway(IP1, IP2, IP3, IP4) > 0)

{

MessageBox.Show("Gateway: " + IP1 + "." + IP2 + "." + IP3 + "."

_ + IP4);

}
Matlab

[status, IP1, IP2, IP3, IP4] = MyPTE1.GetEthernet_NetworkGateway(IP1, IP2,

IP3, IP4)

if status > 0

h = msgbox ("Gateway: ", IP1, ".", IP2, ".", IP3, ".", IP4)

end

Test Solutions - Programming Manual Page 119
Modular Test Systems 19-Oct-17 (A9)

4.5 (e) - Get Subnet Mask

Declaration

 Short GetEthernet_SubNetMask(Int b1, Int b2, Int b3, Int b4)

Description

This function returns the subnet mask used by the network gateway to which the system is
currently connected. A series of user defined variables are passed to the function to be
updated with the subnet mask (one per octet).

Parameters

Data Type Variable Description

Int b1 Required. Integer variable which will be updated with the
first (highest order) octet of the subnet mask (for example
“255” for the subnet mask “255.255.255.0”).

Int b2 Required. Integer variable which will be updated with the
second octet of the subnet mask (for example “255” for the
subnet mask “255.255.255.0”).

Int b2 Required. Integer variable which will be updated with the
third octet of the subnet mask (for example “255” for the
subnet mask “255.255.255.0”).

Int b4 Required. Integer variable which will be updated with the last
(lowest order) octet of the subnet mask (for example “0” for
the subnet mask “255.255.255.0”).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Test Solutions - Programming Manual Page 120
Modular Test Systems 19-Oct-17 (A9)

Example

See Also

Get Ethernet Configuration
Save Subnet Mask

Visual Basic
If MyPTE1.GetEthernet_SubNetMask(b1, b2, b3, b4) > 0 Then

MsgBox ("Subnet mask: " & b1 & "." & b2 & "." & b3 & "." & b4)

End If

Visual C++
if (MyPTE1->GetEthernet_SubNetMask(b1, b2, b3, b4) > 0)

{

MessageBox::Show("Subnet mask: " + b1 + "." + b2 + "." + b3 + "."

_ + b4);

}
Visual C#

if (MyPTE1.GetEthernet_SubNetMask(b1, b2, b3, b4) > 0)

{

MessageBox.Show("Subnet mask: " + b1 + "." + b2 + "." + b3 + "."

_ + b4);

}
Matlab

[status, b1, b2, b3, b4] = MyPTE1.GetEthernet_SubNetMask(b1, b2, b3, b4)

if status > 0

h = msgbox ("Subnet mask: ", b1, ".", b2, ".", b3, ".", b4)

end

Test Solutions - Programming Manual Page 121
Modular Test Systems 19-Oct-17 (A9)

4.5 (f) - Get TCP/IP Port

Declaration

 Short GetEthernet_TCPIPPort(Int port)

Description

This function returns the TCP/IP port used by the test system for HTTP communication. The
default is port 80.

Note: Port 23 is reserved for Telnet communication and cannot be set as the HTTP port.

Parameters

Data Type Variable Description

Int port Required. Integer variable which will be updated with the
TCP/IP port.

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Ethernet Configuration
Save TCP/IP Port

Visual Basic
If MyPTE1.GetEthernet_SubNetMask(port) > 0 Then

MsgBox ("Port: " & port)

End If

Visual C++
if (MyPTE1->GetEthernet_SubNetMask(port) > 0)

{

MessageBox::Show("Port: " + port);

}
Visual C#

if (MyPTE1.GetEthernet_SubNetMask(port) > 0)

{

MessageBox.Show("Port: " + port);

}
Matlab

[status, port] = MyPTE1.GetEthernet_SubNetMask(port)

if status > 0

h = msgbox ("Port: ", port)

end

Test Solutions - Programming Manual Page 122
Modular Test Systems 19-Oct-17 (A9)

4.5 (g) - Get DHCP Status

Declaration

 Short GetEthernet_UseDHCP()

Description

This function indicates whether the test system is using DHCP (dynamic host control
protocol), in which case the IP configuration is derived from a network server; or user
defined “static” IP settings.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

Short 0 DHCP not in use (IP settings are static and manually
configured)

Short 1 DHCP in use (IP settings are assigned automatically by the
network)

Example

See Also

Get Ethernet Configuration
Use DHCP

Visual Basic
DHCPstatus = MyPTE1.GetEthernet_UseDHCP()

Visual C++
DHCPstatus = MyPTE1->GetEthernet_UseDHCP();

Visual C#
DHCPstatus = MyPTE1.GetEthernet_UseDHCP();

Matlab
DHCPstatus = MyPTE1.GetEthernet_UseDHCP

Test Solutions - Programming Manual Page 123
Modular Test Systems 19-Oct-17 (A9)

4.5 (h) - Get Password Status

Declaration

 Short GetEthernet_UsePWD()

Description

This function indicates whether the modular test system is currently configured to require a
password for HTTP/Telnet communication.

Parameters

Data Type Variable Description

None

Return Values

Data Type Value Description

Short 0 Password not required

Short 1 Password required

Example

See Also

Get Password
Use Password
Set Password

Visual Basic
PWDstatus = MyPTE1.GetEthernet_UsePWD()

Visual C++
PWDstatus = MyPTE1->GetEthernet_UsePWD();

Visual C#
PWDstatus = MyPTE1.GetEthernet_UsePWD();

Matlab
PWDstatus = MyPTE1.GetEthernet_UsePWD

Test Solutions - Programming Manual Page 124
Modular Test Systems 19-Oct-17 (A9)

4.5 (i) - Get Password

Declaration

 Short GetEthernet_PWD(String Pwd)

Description

This function returns the current password used by the modular test system for HTTP/Telnet
communication. The password will be returned even if the device is not currently configured
to require a password.

Parameters

Data Type Variable Description

String Pwd Required. String variable which will be updated with the
password.

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Password Status
Use Password
Set Password

Visual Basic
If MyPTE1.GetEthernet_PWD(pwd) > 0 Then

MsgBox ("Password: " & pwd)

End If

Visual C++
if (MyPTE1->GetEthernet_PWD(pwd) > 0)

{

MessageBox::Show("Password: " + pwd);

}
Visual C#

if (MyPTE1.GetEthernet_PWD(pwd) > 0)

{

MessageBox.Show("Password: " + pwd);

}
Matlab

[status, pwd] = MyPTE1.GetEthernet_PWD(pwd)

if status > 0

h = msgbox ("Password: ", pwd)

end

Test Solutions - Programming Manual Page 125
Modular Test Systems 19-Oct-17 (A9)

4.5 (j) - Save IP Address

Declaration

 Short SaveEthernet_IPAddress(Int b1, Int b2, Int b3, Int b4)

Description

This function sets a static IP address to be used by the connected test system.

Note: this could subsequently be overwritten automatically if DHCP is enabled (see Use
DHCP).

Parameters

Data Type Variable Description

Int IP1 Required. First (highest order) octet of the IP address to set
(for example “192” for the IP address “192.168.1.0”).

Int IP2 Required. Second octet of the IP address to set (for example
“168” for the IP address “192.168.1.0”).

Int IP2 Required. Third octet of the IP address to set (for example
“1” for the IP address “192.168.1.0”).

Int IP4 Required. Last (lowest order) octet of the IP address to set
(for example “0” for the IP address “192.168.1.0”).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Ethernet Configuration
Get IP Address

Visual Basic
status = MyPTE1.SaveEthernet_IPAddress(192, 168, 1, 0)

Visual C++
status = MyPTE1->SaveEthernet_IPAddress(192, 168, 1, 0);

Visual C#
status = MyPTE1.SaveEthernet_IPAddress(192, 168, 1, 0);

Matlab
status = MyPTE1.SaveEthernet_IPAddress(192, 168, 1, 0)

Test Solutions - Programming Manual Page 126
Modular Test Systems 19-Oct-17 (A9)

4.5 (k) - Save Network Gateway

Declaration

 Short SaveEthernet_NetworkGateway(Int b1, Int b2, Int b3, Int b4)

Description

This function sets the IP address of the network gateway to which the system should
connect.

Note: this could subsequently be overwritten automatically if DHCP is enabled (see Use
DHCP).

Parameters

Data Type Variable Description

Int IP1 Required. First (highest order) octet of the network gateway
IP address (for example “192” for the IP address
“192.168.1.0”).

Int IP2 Required. Second octet of the network gateway IP address
(for example “168” for the IP address “192.168.1.0”).

Int IP2 Required. Third octet of the network gateway IP address (for
example “1” for the IP address “192.168.1.0”).

Int IP4 Required. Last (lowest order) octet of the network gateway
IP address (for example “0” for the IP address “192.168.1.0”).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Ethernet Configuration
Get Network Gateway

Visual Basic
status = MyPTE1.SaveEthernet_NetworkGateway(192, 168, 1, 0)

Visual C++
status = MyPTE1->SaveEthernet_NetworkGateway(192, 168, 1, 0);

Visual C#
status = MyPTE1.SaveEthernet_NetworkGateway(192, 168, 1, 0);

Matlab
status = MyPTE1.SaveEthernet_NetworkGateway(192, 168, 1, 0)

Test Solutions - Programming Manual Page 127
Modular Test Systems 19-Oct-17 (A9)

4.5 (l) - Save Subnet Mask

Declaration

 Short SaveEthernet_SubnetMask(Int b1, Int b2, Int b3, Int b4)

Description

This function sets the subnet mask of the network to which the system should connect.

Note: this could subsequently be overwritten automatically if DHCP is enabled (see Use
DHCP).

Parameters

Data Type Variable Description

Int IP1 Required. First (highest order) octet of the subnet mask (for
example “255” for the subnet mask “255.255.255.0”).

Int IP2 Required. Second octet of the subnet mask (for example
“255” for the subnet mask “255.255.255.0”).

Int IP2 Required. Third octet of the subnet mask (for example “255”
for the subnet mask “255.255.255.0”).

Int IP4 Required. Last (lowest order) octet of the subnet mask (for
example “0” for the subnet mask “255.255.255.0”).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Ethernet Configuration
Get Subnet Mask

Visual Basic
status = MyPTE1.SaveEthernet_SubnetMask(255, 255, 255, 0)

Visual C++
status = MyPTE1->SaveEthernet_SubnetMask(255, 255, 255, 0);

Visual C#
status = MyPTE1.SaveEthernet_SubnetMask(255, 255, 255, 0);

Matlab
status = MyPTE1.SaveEthernet_SubnetMask(255, 255, 255, 0)

Test Solutions - Programming Manual Page 128
Modular Test Systems 19-Oct-17 (A9)

4.5 (m) - Save TCP/IP Port

Declaration

 Short SaveEthernet_TCPIPPort(Int port)

Description

This function sets the TCP/IP port used by the system for HTTP communication. The default
is port 80.

Note: Port 23 is reserved for Telnet communication and cannot be set as the HTTP port.

Parameters

Data Type Variable Description

Int port Required. Numeric value of the TCP/IP port.

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get TCP/IP Port

Visual Basic
status = MyPTE1.SaveEthernet_TCPIPPort(70)

Visual C++
status = MyPTE1->SaveEthernet_TCPIPPort(70);

Visual C#
status = MyPTE1.SaveEthernet_TCPIPPort(70);

Matlab
status = MyPTE1.SaveEthernet_TCPIPPort(70)

Test Solutions - Programming Manual Page 129
Modular Test Systems 19-Oct-17 (A9)

4.5 (n) - Use DHCP

Declaration

 Short SaveEthernet_UseDHCP(Int UseDHCP)

Description

This function enables or disables DHCP (dynamic host control protocol). When enabled the
IP configuration of the system is assigned automatically by the network server; when
disabled the user defined “static” IP settings apply.

Parameters

Data Type Variable Description

Int UseDHCP Required. Integer value to set the DHCP mode:
0 - DHCP disabled (static IP settings used)
1 - DHCP enabled (IP setting assigned by network)

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get DHCP Status

Visual Basic
status = MyPTE1.SaveEthernet_UseDHCP(1)

Visual C++
status = MyPTE1->SaveEthernet_UseDHCP(1);

Visual C#
status = MyPTE1.SaveEthernet_UseDHCP(1);

Matlab
status = MyPTE1.SaveEthernet_UseDHCP(1)

Test Solutions - Programming Manual Page 130
Modular Test Systems 19-Oct-17 (A9)

4.5 (o) - Use Password

Declaration

 Short SaveEthernet_UsePWD(Int UsePwd)

Description

This function enables or disables the password requirement for HTTP/Telnet communication
with the system.

Parameters

Data Type Variable Description

Int UseDHCP Required. Integer value to set the password mode:
0 – Password not required
1 – Password required

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Password Status
Get Password
Set Password

Visual Basic
status = MyPTE1.SaveEthernet_UsePWD(1)

Visual C++
status = MyPTE1->SaveEthernet_UsePWD(1);

Visual C#
status = MyPTE1.SaveEthernet_UsePWD(1);

Matlab
status = MyPTE1.SaveEthernet_UsePWD(1)

Test Solutions - Programming Manual Page 131
Modular Test Systems 19-Oct-17 (A9)

4.5 (p) - Set Password

Declaration

 Short SaveEthernet_PWD(String Pwd)

Description

This function sets the password used by the system for HTTP/Telnet communication. The
password will not affect switch operation unless Use Password is also enabled.

Parameters

Data Type Variable Description

String Pwd Required. The password to set (20 characters maximum).

Return Values

Data Type Value Description

Short 0 Command failed

Short 1 Command completed successfully

Example

See Also

Get Password Status
Get Password
Use Password

Visual Basic
status = MyPTE1.SaveEthernet_PWD("123")

Visual C++
status = MyPTE1->SaveEthernet_PWD("123");

Visual C#
status = MyPTE1.SaveEthernet_PWD("123");

Matlab
status = MyPTE1.SaveEthernet_PWD("123")

Test Solutions - Programming Manual Page 132
Modular Test Systems 19-Oct-17 (A9)

4.5 (q) - Set Telnet Prompt

Declaration

 Int SaveEthernet_PromptMN(Int Enable_Prompt)

Description

Determines the prompt to be returned by the test system for Telnet communication. By
default the prompt is disabled so the response for Telnet communication is a new line
character. When enabled, a full prompt is returned to the unit in response to all Telnet
communication, taking the form “MODEL_NAME>”.

Parameters

Data Type Variable Description

Int Enable_Prompt 0 = Disabled (new line character returned)
1 = Enabled (full model name prompt returned)

Return Values

Data Type Value Description

Int 0 Command failed

 1 Command completed successfully

Example

See Also

Get Telnet Prompt Status

Visual Basic
status = MyPTE1.SaveEthernet_PromptMN(1)

Visual C++
status = MyPTE1->SaveEthernet_PromptMN(1);

Visual C#
status = MyPTE1.SaveEthernet_PromptMN(1);

Matlab
status = MyPTE1.SaveEthernet_PromptMN(1)

Test Solutions - Programming Manual Page 133
Modular Test Systems 19-Oct-17 (A9)

4.5 (r) - Get Telnet Prompt Status

Declaration

 Int GetEthernet_PromptMN()

Description

Indicates whether a full prompt is to be returned by the test system for Telnet
communication. By default the prompt is disabled so the response for Telnet
communication is a new line character. When enabled, a full prompt is returned to the unit
in response to all Telnet communication, taking the form “MODEL_NAME>”.

Return Values

Data Type Value Description

Int 0 Disabled (new line character returned)

 1 Enabled (full model name prompt returned)

Example

See Also

Set Telnet Prompt

Visual Basic
status = MyPTE1.GetEthernet_PromptMN()

Visual C++
status = MyPTE1->GetEthernet _PromptMN();

Visual C#
status = MyPTE1.GetEthernet _PromptMN();

Matlab
status = MyPTE1.GetEthernet _PromptMN()

Test Solutions - Programming Manual Page 134
Modular Test Systems 19-Oct-17 (A9)

5 - Operating in a Linux Environment via USB

To open a USB connection to Mini-Circuits ZTM & RCM Series modular test systems, the
Vendor ID and Product ID are required:

 Mini-Circuits Vendor ID: 0x20CE

 ZTM Series Product ID: 0x22

Communication with the test system is carried out by way of USB Interrupt. The transmitted
and received buffer sizes are 64 Bytes each:

 Transmit Array = [Byte 0][Byte1][Byte2]…[Byte 63]

 Returned Array = [Byte 0][Byte1][Byte2]…[Byte 63]

In most cases, the full 64 byte buffer size is not needed so any unused bytes become “don’t
care” bytes; they can take on any value without affecting the operation of the system.

5.1 - Summary of Commands

The commands that can be sent to the ZTM Series are summarized in the table below and
detailed on the following pages.

 Description
Command Code

(Byte 0)
Comments

a Get Device Model Name 40

b Get Device Serial Number 41

c Send SCPI Command 1

d Get Firmware 99

e Get Internal Temperature

114

115

118

Sensor 1

Sensor 2

Sensor 3

Test Solutions - Programming Manual Page 135
Modular Test Systems 19-Oct-17 (A9)

5.2 - Detailed Description of Commands

5.2 (a) - Get Device Model Name

Description

Returns the Mini-Circuits part number of the connected modular test system.

Transmit Array

Byte Data Description

0 40 Interrupt code for Get Device Model Name

1- 63 Not significant “Don’t care” bytes, can be any value

Returned Array

Byte Data Description

0 40 Interrupt code for Get Device Model Name

1 to
(n-1)

Model Name Series of bytes containing the ASCII code for each character
in the model name

n 0 Zero value byte to indicate the end of the model name

(n+1)
to 63

Not significant “Don’t care” bytes, can be any value

Example

The following array would be returned for ZTM-999 (see Appendix A for conversions
between decimal, binary and ASCII characters):

Byte Data Description

0 40 Interrupt code for Get Device Model Name

1 90 ASCII character code for Z

2 84 ASCII character code for T

3 77 ASCII character code for M

4 45 ASCII character code for -

5 57 ASCII character code for 9

6 57 ASCII character code for 9

7 57 ASCII character code for 9

8 0 Zero value byte to indicate end of string

See Also

Get Device Serial Number
SCPI: Get Model Name

http://www.minicircuits.com/softwaredownload/Prog_Manual-Appendices.pdf

Test Solutions - Programming Manual Page 136
Modular Test Systems 19-Oct-17 (A9)

5.2 (b) - Get Device Serial Number

Description

Returns the serial number of the connected modular test system.

Transmit Array

Byte Data Description

0 41 Interrupt code for Get Device Serial Number

1 - 63 Not significant “Don’t care” bytes, can be any value

Returned Array

Byte Data Description

0 41 Interrupt code for Get Device Serial Number

1 to
(n-1)

Serial Number Series of bytes containing the ASCII code for each character
in the serial number

n 0 Zero value byte to indicate the end of the serial number

(n+1)
to 63

Not significant “Don’t care” bytes, can be any value

Example

The following example indicates that the connected ZTM Series system has serial number
1130922011 (see Appendix A for conversions between decimal, binary and ASCII characters):

Byte Data Description

0 41 Interrupt code for Get Device Serial Number

1 49 ASCII character code for 1

2 49 ASCII character code for 1

3 51 ASCII character code for 3

4 48 ASCII character code for 0

5 57 ASCII character code for 9

6 50 ASCII character code for 2

7 50 ASCII character code for 2

8 48 ASCII character code for 0

9 49 ASCII character code for 1

10 49 ASCII character code for 1

11 0 Zero value byte to indicate end of string

See Also

Get Device Model Name
SCPI: Get Serial Number

http://www.minicircuits.com/softwaredownload/Prog_Manual-Appendices.pdf

Test Solutions - Programming Manual Page 137
Modular Test Systems 19-Oct-17 (A9)

5.2 (c) - Send SCPI Command

Description

This function sends an SCPI command to the modular test system and collects the returned
acknowledgement. SCPI (Standard Commands for Programmable Instruments) is a common
method for communicating with and controlling instrumentation products and provides the
main method for interfacing with the ZTM Series system’s internal test components.

Transmit Array

Byte Data Description

0 1 Interrupt code for Send SCPI Command

1 - 63 SCPI Transmit
String

The SCPI command to send represented as a series of ASCII
character codes, one character code per byte

Returned Array

Byte Data Description

0 1 Interrupt code for Send SCPI Command

1 to
(n-1)

SCPI Return
String

The SCPI return string, one character per byte, represented
as ASCII character codes

n 0 Zero value byte to indicate the end of the SCPI return string

(n+1)
to 63

Not significant “Don’t care” bytes, can be any value

Test Solutions - Programming Manual Page 138
Modular Test Systems 19-Oct-17 (A9)

Example 1 (Get Model Name)

The SCPI command to request the model name is :MN? (see Get Model Name)

The ASCII character codes representing the 4 characters in this command should be sent in
bytes 1 to 4 of the transmit array as follows (see Appendix A for conversions between
decimal, binary and ASCII characters):

Byte Data Description

0 1 Interrupt code for Send SCPI Command

1 49 ASCII character code for :

2 77 ASCII character code for M

3 78 ASCII character code for N

4 63 ASCII character code for ?

The returned array for ZTM-999 would be as follows:

Byte Data Description

0 1 Interrupt code for Send SCPI Command

1 90 ASCII character code for Z

2 84 ASCII character code for T

3 77 ASCII character code for M

4 45 ASCII character code for -

5 57 ASCII character code for 9

6 57 ASCII character code for 9

7 57 ASCII character code for 9

8 0 Zero value byte to indicate end of string

http://www.minicircuits.com/softwaredownload/Prog_Manual-Appendices.pdf

Test Solutions - Programming Manual Page 139
Modular Test Systems 19-Oct-17 (A9)

Example 2 (Set Attenuator)

The SCPI command to set an attenuator in slot 1A to 70.25dB is :RUDAT:1A:ATT:70.25
(see Set Attenuation). The ASCII character codes representing the 19 characters in this
command should be sent in bytes 1 to 19 of the transmit array as follows:

Byte Data Description

0 1 Interrupt code for Send SCPI Command

1 58 ASCII character code for :

2 82 ASCII character code for R

3 85 ASCII character code for U

4 68 ASCII character code for D

5 65 ASCII character code for A

6 84 ASCII character code for T

7 58 ASCII character code for :

8 49 ASCII character code for 1

9 65 ASCII character code for A

10 58 ASCII character code for :

11 65 ASCII character code for A

12 84 ASCII character code for T

13 84 ASCII character code for T

14 58 ASCII character code for :

15 55 ASCII character code for 7

16 48 ASCII character code for 0

17 46 ASCII character code for .

18 50 ASCII character code for 2

19 53 ASCII character code for 5

The returned array to indicate success would be:

Byte Data Description

0 1 Interrupt code for Send SCPI Command

1 49 ASCII character code for 1

2 32 ASCII character code for space character

3 45 ASCII character code for -

4 32 ASCII character code for space character

5 83 ASCII character code for S

6 85 ASCII character code for U

7 67 ASCII character code for C

8 67 ASCII character code for C

9 69 ASCII character code for E

10 83 ASCII character code for S

11 83 ASCII character code for S

12 0 Zero value byte to indicate end of string

See Also

SCPI Command Set for Control of ZTM-X Components

Test Solutions - Programming Manual Page 140
Modular Test Systems 19-Oct-17 (A9)

5.2 (d) - Get Firmware

Description

This function returns the internal firmware version of the modular test system.

Transmit Array

Byte Data Description

0 99 Interrupt code for Get Firmware

1- 63 Not significant “Don’t care” bytes, can be any value

Returned Array

Byte Data Description

0 99 Interrupt code for Get Firmware

1 Reserved Internal code for factory use only

2 Reserved Internal code for factory use only

3 Reserved Internal code for factory use only

4 Reserved Internal code for factory use only

5 Firmware
Letter

ASCII code for the first character in the firmware revision
identifier

6 Firmware
Number

ASCII code for the second character in the firmware revision
identifier

7-63 Not significant “Don’t care” bytes, could be any value

Example

The below returned array indicates that the system has firmware version “C3” (see Appendix
A for conversions between decimal, binary and ASCII characters):

Byte Data Description

0 99 Interrupt code for Get Firmware

1 49 Not significant

2 77 Not significant

3 78 Not significant

4 63 Not significant

5 67 ASCII character code for C

6 51 ASCII character code for 3

See Also

SCPI: Get Firmware

http://www.minicircuits.com/softwaredownload/Prog_Manual-Appendices.pdf
http://www.minicircuits.com/softwaredownload/Prog_Manual-Appendices.pdf

Test Solutions - Programming Manual Page 141
Modular Test Systems 19-Oct-17 (A9)

5.2 (e) - Get Internal Temperature

Description

Returns the internal temperature of the modular test system in degrees Celsius to 2 decimal
places.

Transmit Array

Byte Data Description

0 114, 115 or 118 Interrupt code for Get Internal Temperature:
114 = Check temperature sensor 1
115 = Check temperature sensor 2 (if available)
118 = Check temperature sensor 3 (if available)

163 Not significant “Don’t care” bytes, can be any value

Returned Array

Byte Data Description

0 114, 115 or 118 Interrupt code for Get Internal Temperature:
114 = Check temperature sensor 1
115 = Check temperature sensor 2 (if available)
118 = Check temperature sensor 3 (if available)

1 43 or 45 ASCII code for the first character of the temperature:
43 = positive (+)
45 = negative (-)

2 Temperature
Digit 1

ASCII character code for the first digit of the temperature
reading

3 Temperature
Digit 2

ASCII character code for the second digit of the temperature
reading

4 46 ASCII character code for the decimal point symbol (“.”)

5 Temperature
Decimal Place 1

ASCII character code for the first decimal place of the
temperature reading

6 Temperature
Decimal Place 2

ASCII character code for the second decimal place of the
temperature reading

7-63 Not significant “Don’t care” bytes, can be any value

Test Solutions - Programming Manual Page 142
Modular Test Systems 19-Oct-17 (A9)

Example

To check the internal temperature measured by sensor 2, send the following transmit array:

Byte Data Description

0 115 Interrupt code for Get Internal Temperature @ Sensor 2

The below returned array would indicate a temperature of +28.43°C (see Appendix A for
conversions between decimal, binary and ASCII characters):

Byte Data Description

0 115 Interrupt code for Get Internal Temperature @ Sensor 2

1 43 ASCII character code for +

2 50 ASCII character code for 2

3 56 ASCII character code for 8

4 46 ASCII character code for .

5 52 ASCII character code for 4

6 51 ASCII character code for 3

See Also

SCPI: Get Internal Temperature

http://www.minicircuits.com/softwaredownload/Prog_Manual-Appendices.pdf

Test Solutions - Programming Manual Page 143
Modular Test Systems 19-Oct-17 (A9)

6 - Ethernet Control over IP Networks

Mini-Circuits’ ZTM & RCM Series modular test systems have an RJ45 connector option for
remote control over Ethernet TCP/IP networks. HTTP (Get/Post commands) and Telnet
communication are supported. UDP transmission is also supported for discovering available
ZTM Series systems on the network.

The system can be configured manually with a static IP address or automatically by the
network using DHCP (Dynamic Host Control Protocol):

 Dynamic IP (factory default setting)
o Subnet Mask, Network Gateway and local IP Address are assigned by the

network server on each connection
o The only user controllable parameters are:

 TCP/IP Port (the port used for HTTP communication with the network;
default is port 80)

 Password (up to 20 characters; default is no password)

 Static IP
o All parameters must be specified by the user:

 IP Address (must be a legal and unique address on the local network)
 Subnet Mask (subnet mask of the local network)
 Network gateway (the IP address of the network gateway/router)
 TCP/IP port (the port used for HTTP communication with the network;

default is port 80)
 Password (up to 20 characters; default is no password)

Notes:

1. The TCP/IP port must be included in every HTTP command to the ZTM Series system
unless the default port 80 is used

2. Port 23 is reserved for Telnet communication

Test Solutions - Programming Manual Page 144
Modular Test Systems 19-Oct-17 (A9)

6.1 - Ethernet Communication

Communication over Ethernet can be accomplished using HTTP Get/Post commands or
Telnet communication to send the SCPI commands outlined in SCPI Commands for Control of
Modular Test Components. These communication protocols are both commonly supported
and simple to implement in most programming languages. Any Internet browser can be used
as a console/tester for HTTP control by typing the commands/queries directly into the
address bar.

6.1 (a) - Sending SCPI Commands/Queries Using HTTP

The basic format of the HTTP command to send to the modular test system is:

http://ADDRESS:PORT/PWD;COMMAND

Where

 http:// is required

 ADDRESS = IP address (required)

 PORT = TCP/IP port (can be omitted if port 80 is used)

 PWD = Password (can be omitted if password security is not enabled)

 COMMAND = Command to send to the switch

Example 1:

http://192.168.100.100:800/PWD=123;:SPDT:1A:STATE:2

Explanation:

 The ZTM Series has IP address 192.168.100.100 and uses port 800

 Password security is enabled and set to “123”

 The command is to set an SPDT in location 1A to state 2

Example 2:

http://10.10.10.10/:SP4T:1:STATE?

Explanation:

 The switch has IP address 10.10.10.10 and uses the default port 80

 Password security is disabled

 The command is to query the switch state of an SP4T in location 1

The system will return the result of the command/query as a string of ASCII characters.

Test Solutions - Programming Manual Page 145
Modular Test Systems 19-Oct-17 (A9)

6.1 (b) - Sending SCPI/Commands/Queries Using Telnet

Communication is started by creating a Telnet connection to the system’s IP address. On
successful connection the “line feed” character will be returned. If the system has a
password enabled then this must be sent as the first command after connection.

The system can be optionally configured to return a full prompt to the user with each Telnet
response. The prompt will take the form ZTM-X> where ZTM-X is the model name of the
connected system. This feature can be enabled using the GUI application software or
programmatically via the DLL.

The full list of all commands and queries is detailed in the following sections. A basic
example of the Telnet communication structure using the Windows Telnet Client is
summarized below:

1) Set up Telnet connection to a modular test system with IP address 10.0.6.46:

2) The “line feed” character is returned indicating the connection was successful:

3) The password (if enabled) must be sent as the first command in the format “PWD=x;”. A
return value of “1 - Success” indicates success:

4) Any number of commands and queries can be sent as needed:

Test Solutions - Programming Manual Page 146
Modular Test Systems 19-Oct-17 (A9)

6.1 (c) - Device Discovery Using UDP

In addition to HTTP and Telnet, ZTM & RCM Series test systems also provide limited support of
the UDP protocol for the purpose of “device discovery.” This allows a user to request the IP
address and configuration of all Mini-Circuits modular test systems connected on the network;
full control of those units is then accomplished using HTTP or Telnet, as detailed previously.

Alternatively, the IP configuration can be identified or changed by connecting the system with
the USB interface (see Configuring Ethernet Settings).

Note: UDP is a simple transmission protocol that provides no method for error correction or
guarantee of receipt.

UDP Ports

Mini-Circuits’ modular test systems are configured to listen on UDP port 4950 and answer on
UDP port 4951. Communication on these ports must be allowed through the computer’s
firewall in order to use UDP for device discovery. If the test system’s IP address is already
known it is not necessary to use UDP.

Transmission

The command MODULAR-ZT? should be broadcast to the local network using UDP protocol on
port 4950.

Receipt

All Mini-Circuits ZTM & RCM Series systems that receive the request will respond with the
following information (each field separated by CrLf) on port 4951:

 Model Name

 Serial Number

 IP Address/Port

 Subnet Mask

 Network Gateway

 MAC Address

Test Solutions - Programming Manual Page 147
Modular Test Systems 19-Oct-17 (A9)

Example

Sent Data:

 MODULAR-ZT?

Received Data:

Model Name: ZTM-999
Serial Number: 11302120001
IP Address=192.168.9.101 Port: 80
Subnet Mask=255.255.0.0
Network Gateway=192.168.9.0
Mac Address=D0-73-7F-82-D8-01

Model Name: ZTM-999
Serial Number: 11302120002
IP Address=192.168.9.102 Port: 80
Subnet Mask=255.255.0.0
Network Gateway=192.168.9.0
Mac Address=D0-73-7F-82-D8-02

Model Name: ZTM-999
Serial Number: 11302120003
IP Address=192.168.9.103 Port: 80
Subnet Mask=255.255.0.0
Network Gateway=192.168.9.0
Mac Address=D0-73-7F-82-D8-03

Test Solutions - Programming Manual Page 148
Modular Test Systems 19-Oct-17 (A9)

7 - Program Examples & Tutorials

These examples are intended to demonstrate the basics or programming with Mini-Circuits' ZTM &
RCM Series test systems. If support is required for a specific programming example which isn't
covered below then please contact Mini-Circuits for support (testsolutions@minicircuits.com).

7.1 - Perl Programming

7.1 (a) - Ethernet HTTP Connection Using Perl's LWP Simple Interface

Perl's LWP Simple interface can be used to send HTTP commands to the ZTM or RCM Series when
programming with Perl. The below code example demonstrates the process.

7.1 (b) - USB Connection Using the ActiveX DLL in 32-bit Perl Distributions

The majority of 32-bit Perl distributions for Windows operating systems provide support for ActiveX,
meaning Mini-Circuits' ActiveX DLL can be used to control the modular test system in these
environments. The below simple code segment demonstrates the process for this; any number of
commands can be sent between the Connect and Disconnect functions.

#!/usr/bin/perl

use strict;

use warnings;

use LWP::Simple; # Use the LWP::Simple interface for HTTP

my $value = 40;

my $ip_address = "192.168.9.74"; # IP address of the ZTM Series to control

my $att_list = "1A,2A,3A,4A"; # The list of attenuator locations in the ZTM

my @att_location = split /,/, $att_list;

foreach my $att_location (@att_location) {

 # Loop for each attenuator location

 # Set attenuator in this location

 my $return_value = get("http://$ip_address/:RUDAT:$att_location:ATT:$value");

 print "ZTM Series response: $return_value\n";

 # Confirm attenuation setting for this attenuator

 $return_value = get("http://$ip_address/:RUDAT:$att_location:ATT?");

 print "Attenuator $att_location set to $return_value\n";

}

use feature ':5.10';

use Win32::OLE;

use Win32::OLE::Const 'Microsoft ActiveX Data Objects';

my $ztm = Win32::OLE->new('ModularZT.USB_Control');

$ztm ->Connect();

$ztm ->Send_SCPI(":RUDAT:1A:ATT:70.25", ztm_return)

$ztm ->Send_SCPI(":SP4T:1A:STATE:3", ztm_return)

$ztm ->Disconnect;

mailto:ztmgroup@minicircuits.com

Test Solutions - Programming Manual Page 149
Modular Test Systems 19-Oct-17 (A9)

7.1 (c) - Work-Around for 64-bit Perl Distributions Using USB Connection

The majority of 64-bit Perl distributions do not provide support for either ActiveX or .Net so in these
cases Mini-Circuits' DLLs cannot be used directly. The work-around when a USB connection is
required is to create a separate executable program in another programming environment which can
sit in the middle. The function of the executable is to use the .Net DLL to connect to the ZTM or RCM
Series, send a single user specified command, return the response to the user, and disconnect from
the DLL. This executable can then be easily called from Perl script to send the required commands to
the system, without Perl having to directly interface with the DLL.

Mini-Circuits can supply on request an executable to interface with the DLL. See Creating an
Executable Using the .Net DLL in C# for USB Control for the example source code for such an
executable (developed using C#). The below script demonstrates use of this executable in Perl script
to send a SCPI command to a ZTM Series test system (specified by serial number or address) and read
the response.

#!/usr/bin/perl

use strict;

use warnings;

my $serial_number = 11404280010; # The ZTM Series serial number

my $att_list = "1A,2A,3A,4A"; # The list of attenuator locations in the ZTM

my @att_location = split /,/, $att_list;

my $value = 40;

my $exe = "ZTM.exe"; # The .exe providing an interface to the ZTM DLL

my @cmd;

foreach my $att_location (@att_location) {

 # Loop for each attenuator location

 # Set attenuator in this location

 @cmd = ($exe, "-s $serial_number :RUDAT:$att_location:ATT:$value");

 my $return_value = qx{@cmd};

 print "ZTM Series response: $return_value\n";

 # Confirm attenuation setting for this attenuator

 @cmd = ($exe, "-s $serial_number :RUDAT:$att_location:ATT?");

 $return_value = qx{@cmd};

 print "Attenuator $att_location set to $return_value\n";

}

Test Solutions - Programming Manual Page 150
Modular Test Systems 19-Oct-17 (A9)

7.2 - C# Programming

7.2 (a) - Creating an Executable Using the .Net DLL in C# for USB Control

The below example is a simple executable program that connects to the .Net DLL, sends a user
specified SCPI command to the test system, returns the response, then disconnects from the DLL and
terminates. It requires the .Net DLL to be installed on the host operating system and the ZTM or
RCM Series test system to be connected to the PC via USB.

This executable can be called from a command line prompt or within a script. The following
command line calls demonstrate use of the executable (compiled as ZTM.exe), connecting by serial
number or address, to set and read attenuation:

 ZTM.exe -s 11401250027 :RUDAT:1A:ATT:35.75 (serial number 11401250027)

 ZTM.exe -a 255 :RUDAT:1A:ATT? (USB address 255)

namespace ZTM

{

 class Program

 {

 static int Main(string[] args)

 {

 int x = 0;

 string SN = null;

 string SCPI = null;

 string RESULT = null;

 int Add = 0;

 ModularZT64.USB_ZT ZT; // Reference the DLL

 if (args.Length == 0) return 0;

 ZT = new ModularZT64.USB_ZT (); // Declare a class (defined in the DLL)

 SCPI = args[2];

 if (args[0].ToString().Contains("-help")) // Print a help file

 {

 Console.WriteLine("Help ZTM.exe");

 Console.WriteLine("---");

 Console.WriteLine("ZTM.exe -s SN command :Send SCPI command to S/N");

 Console.WriteLine("ZTM.exe -a add SCPI :Send SCPI command to Address");

 Console.WriteLine("---");

 }

 if (args[0].ToString().Contains("-s")) // User want to connect by S/N

 {

 SN = args[1];

 x = ZT.Connect(ref SN); // Call DLL connect function

 x = ZT.Send_SCPI(ref SCPI, ref RESULT); // Send SCPI command

 Console.WriteLine(RESULT); // Return the result

 }

 if (args[0].ToString().Contains("-a")) // User wants to connect by address

 {

 Add = Int16.Parse(args[1]);

 x = ZT.ConnectByAddress(ref Add);

 x = ZT.Send_SCPI(ref SCPI, ref RESULT);

 Console.WriteLine(RESULT);

 }

 ZT.Disconnect(); // Call DLL disconnect function to finish

 return x;

 }

 }

}

Test Solutions - Programming Manual Page 151
Modular Test Systems 19-Oct-17 (A9)

7.3 - LabVIEW

7.3 (a) - Creating a LabVIEW VI for USB Control with the ActiveX DLL

These instructions demonstrate how to set up a LabVIEW VI for control of Mini-Circuits' ZTM and
RCM Series test systems using the ActiveX DLL file when connected by USB.

1. Create a New VI (Virtual Instrument) and Reference the DLL

a. Open LabVIEW with a new, blank VI.
b. In the Block Diagram window (accessible by pressing Ctrl+E), select Functions Palette

from the “View” menu at the top of the screen.
c. Click through the Connectivity palette to the ActiveX sub-palette. Select the Automation

Open function and place it on the block diagram.

d. Right click on the Automation Refnum terminal on the left of the Automation Open
function and create a control.

Test Solutions - Programming Manual Page 152
Modular Test Systems 19-Oct-17 (A9)

e. Right click on the new control, choose the ‘Select ActiveX Class’ option and browse to the
location of the ModularZT.dll file.

f. After selecting the DLL file, choose “USB_Control” from the list of objects presented.
g. Right click on the Error In terminal of the Automation Open function and create a new

control.
h. To save space on the block diagram, right-click the Error In icon and uncheck the “View

As Icon” option.

2. Identifying the Serial Numbers of all Connected ZTM Series Systems

This section makes use of the Get_Available_SN_List DLL function to provide a drop-down list of all
connected serial numbers, allowing the user to choose which system to connect. If the serial
numbers are already known or only a single system is connected then this process can be omitted.

a. From the ActiveX sub-palette, choose Invoke Node and place the node on the block
diagram.

b. Connect the right Automation Refnum terminal of the Automation Open function to the
Reference terminal on the Invoke Node.

c. Connect the Error Out terminal of the Automation Open function to the Error In terminal
of the Invoke Node.

d. Click on the Method of the Invoke Node to display a list of all available functions (defined
in the ModularZT.dll file), select “Get_Available_SN_List”.

e. Right-click the Input terminal of the SN_List parameter and create a blank constant. The
constant will provide the SN_List parameter to the Get_Available_SN_List function.

f. From the Programming palette, go to the Comparison sub-palette. Select the Not Equal

To 0 function and place it on the block diagram.
g. Connect the Get_Available_SN_List terminal of the Invoke Node to the input of the Not

Equal To 0 function.

Test Solutions - Programming Manual Page 153
Modular Test Systems 19-Oct-17 (A9)

h. Create an Indicator at the Output terminal of the Not Equal To 0 function. The output of
the Get_Available_SN_List function will be 0 (failure to connect) or 1 (successfully
connected) so the indicator should light up when the retrieval of the serial numbers is
successful.

i. Right-click on the Indicator and rename to “Get SN List Success?”.

j. Place a While Loop (found in the Programming palette, Structures sub-palette) on the
block diagram, external to the previous objects.

k. Delete the stop button if it was included automatically but not the loop condition (the
red dot).

l. Place a Match Pattern function (found in the Programming palette, String sub-palette)
inside the While Loop.

m. Connect the output of the “SN_List” parameter (from the Get_Available_SN_List node)
to the String input terminal of the Match Pattern function.

n. Create another empty string constant outside the While Loop, connected to the Regular
Expression terminal of the Match Pattern function. This is because each SN that the
Node outputs will be separated by a blank space.

o. Connect the Before Substring terminal of the Match Pattern function to the right-hand
edge of the While Loop.

p. Right-click on the Loop Tunnel between the “SN_List” parameter and the String input
terminal of the Match Pattern, select ‘Replace with Shift Register’. The mouse cursor
will automatically change to signify the other end of the Shift Register, click on the Loop
Tunnel at the right-hand edge of the While Loop to place it.

Test Solutions - Programming Manual Page 154
Modular Test Systems 19-Oct-17 (A9)

q. Place a Trim Whitespace.vi from the String sub-palette inside the While Loop.
r. Connect the After Substring terminal of the Match Pattern function to the input of the

VI.
s. Place a Build Array function (found in the Programming palette, Array sub-palette) in the

While Loop and expand it to have two inputs by dragging the bottom edge down
t. An empty String Array constant is needed for the Build Array function. Select Array

constant from the Array sub-palette and place it outside the While Loop.
u. Place another String constant on the block diagram and drag it into the Array constant

box to create the empty String Array.
v. Connect the String Array constant to the first Input terminal of the Build Array function.
w. Connect the Trimmed String terminal of the Trim Whitespace VI to the second terminal

of the Build Array function.
x. Connect the output of the Build Array function to the edge of the While Loop and create

another Shift Register, with the other end at the empty String Array Loop Tunnel.
y. Place a String Length function (from the String sub-palette) inside the While Loop.
z. Connect the Input terminal of the function to the After Substring terminal of the Match

Pattern function. This will form a junction since the After Substring terminal is also
connected to the Trim Whitespace VI.

aa. Connect the Length output terminal of the String Length function to the input of a new
Equal to 0 function (found in the Comparison sub-palette).

bb. Connect the output of the Equal to 0 function to the loop condition. If the output of the
String Length function is 0 it will indicate that there are no more serial numbers and the
Equal to 0 operator will cause the loop to stop.

cc. On the Front Panel of this VI, create a drop-down menu by placing a System Combo Box

function (found in the Systems palette, String & Path sub-palette).
dd. On the Block Diagram, right click the corresponding System Combo Box function, create

a Strings[] Property Node by selection “Create”, “Property Node”, then “Strings[]”.
Place the Strings[] Property Node outside the While Loop.

ee. Right click the Strings[] Property Node and select “Change to Write”.
ff. Rename the System Combo Box function to “SN_List”. Right-click and un-tick “View As

Icon” to save space on the block diagram.
gg. Connect the output from the Shift Register that follows the Build Array function to the

input of the Strings[] Property Node.
hh. Connect the Error Out terminal of the _USB_Control Node to the Error In terminal of the

Strings[] Node.
ii. Create another While Loop and arrange it so that it encompasses everything from the

Automation Open function onwards.
jj. If a Stop Button was not created automatically then right-click on the loop condition and

select “Create Control” to place the button in the loop.

Test Solutions - Programming Manual Page 155
Modular Test Systems 19-Oct-17 (A9)

kk. On the Front Panel, change the Stop Button text from “Stop” to “Connect”.

3. Connecting to a ZTM Series Test System

a. Create a new Invoke Node outside the While Loop.
b. Connect the Reference Out terminal of the Get_Available_SN_List Node to the Reference

terminal of the new Invoke Node.
c. Select “Connect” as the method for the new node.
d. Connect the Error Out terminal of the Strings[] node to the Error In terminal of the

Connect node.
e. Connect the output terminal of the SN_List combo box to the SN input terminal of the

Connect Node.
f. During execution, the program will not get to this stage until the While Loop has exited,

the result being that the program will populate the drop-down box with all serial
numbers and wait for a user input. The program will continue when the user selects the
desired serial number and clicks the Connect button. If the process of identifying serial
numbers is not required (see step 3 above) then the “Connect” function can be used in
place of the “Get_Available_SN_List” function and everything that followed.

g. Following the Connect Node, the user can place any number of additional nodes in
sequence to perform all operations required of the ZTM-X system. The Reference In and
Error In terminals of each new node should be connected to the Reference Out and Error
Out terminals of the previous nodes.

h. The final Invoke Node in the program should be set with the “Disconnect” function in
order to properly close the connection to the ZTM-X system.

i. The final step in the LabVIEW sequence is to create a Close Reference function from the
Connectivity palette to terminate the reference to the DLL file. The Reference In and
Error In terminals of the Close Reference function should be connected to the respective
terminals of the Disconnect function.

j. An Error Out indicator should be added by right clicking on the Error Out terminal of the
Close Reference function and creating an indicator to show the result.

	1 - Overview
	2 - Programming with Mini-Circuits' Modular Test Systems
	2.1 - Control Options
	2.2 - Addressing Individual Test Components
	2.3 - Example ZTM Series Configuration
	2.4 - Example RCM-100 Series Configuration
	2.5 - Example RCM-200 Series Configuration

	3 - SCPI Commands for Control of Modular Test Components
	3.1 - ZTM Series System Operations
	3.1 (a) - Get Model Name
	3.1 (b) - Get Serial Number
	3.1 (c) - Get Configuration
	3.1 (d) - Get Firmware
	3.1 (e) - Get Internal Temperature
	3.1 (f) - Get Heat Alarm
	3.1 (g) - Save Counters & States

	3.2 - Programmable Attenuator Control
	3.2 (a) - Set Attenuation
	3.2 (b) - Get Attenuation
	3.2 (c) - Set Start-Up Attenuation Mode
	3.2 (d) - Get Start-Up Attenuation Mode
	3.2 (e) - Set Start-Up Attenuation Value
	3.2 (f) - Get Start-Up Attenuation Value
	3.2 (g) - Get Maximum Attenuation

	3.3 - SPDT Switch Control
	3.3 (a) - Set SPDT Switch State
	3.3 (b) - Get SPDT Switch State
	3.3 (c) - Set All SPDT Switch States
	3.3 (d) - Get All SPDT Switch States

	3.4 - SP4T Switch Control
	3.4 (a) - Set SP4T Switch State
	3.4 (b) - Get SP4T Switch State
	3.4 (c) - Set All SP4T Switch States
	3.4 (d) - Get All SP4T Switch States

	3.5 - SP6T Switch Control
	3.5 (a) - Set SP6T Switch State
	3.5 (b) - Get SP6T Switch State
	3.5 (c) - Set All SP6T Switch States
	3.5 (d) - Get All SP6T Switch States

	3.6 - SP8T Switch Control
	3.6 (a) - Set SP8T Switch State
	3.6 (b) - Get SP8T Switch State
	3.6 (c) - Set All SP8T Switch States
	3.6 (d) - Get All SP8T Switch States

	3.7 - Transfer Switch Control
	3.7 (a) - Set Transfer Switch State
	3.7 (b) - Get Transfer Switch State
	3.7 (c) - Set All Transfer Switch States
	3.7 (d) - Get All Transfer Switch States

	3.8 - Switch Start-Up and Counter Properties
	3.8 (a) - Set Switch Start-Up Mode
	3.8 (b) - Get Switch Start-Up Mode
	3.8 (c) - Get Switch Counter

	3.9 - Component Labels
	3.9 (a) - Set Component Label
	3.9 (b) - Get Component Label

	3.10 - SCPI - Ethernet Configuration Commands
	3.10 (a) - Set Static IP Address
	3.10 (b) - Get Static IP Address
	3.10 (c) - Set Static Subnet Mask
	3.10 (d) - Get Static Subnet Mask
	3.10 (e) - Set Static Network Gateway
	3.10 (f) - Get Static Network Gateway
	3.10 (g) - Set HTTP Port
	3.10 (h) - Get HTTP Port
	3.10 (i) - Set Telnet Port
	3.10 (j) - Get Telnet Port
	3.10 (k) - Set Password Requirement
	3.10 (l) - Get Password Requirement
	3.10 (m) - Set Password
	3.10 (n) - Get Password
	3.10 (o) - Set DHCP Status
	3.10 (p) - Get DHCP Status
	3.10 (q) - Get MAC Address
	3.10 (r) - Get Current Ethernet Configuration
	3.10 (s) - Update Ethernet Settings

	4 - Operating in a Windows Environment via USB
	4.1 - The DLL (Dynamic Link Library) Concept
	4.1 (a) - ActiveX COM Object
	4.1 (b) - Microsoft.NET Class Library

	4.2 - Referencing the DLL (Dynamic Linked Library)
	4.3 - Summary of DLL Functions
	4.3 (a) - USB Control Functions
	4.3 (b) - Ethernet Configuration Functions

	4.4 - DLL Functions for USB Control
	4.4 (a) - Connect by Serial Number
	4.4 (b) - Connect by Address
	4.4 (c) - Disconnect
	4.4 (d) - Read Model Name
	4.4 (e) - Read Serial Number
	4.4 (f) - Set USB Address
	4.4 (g) - Get USB Address
	4.4 (h) - Get List of Connected Serial Numbers
	4.4 (i) - Get List of Available Addresses
	4.4 (j) - Get Software Connection Status
	4.4 (k) - Get USB Connection Status
	4.4 (l) - Send SCPI Command
	4.4 (m) - Get Firmware
	4.4 (n) - Get Firmware Version (Antiquated)

	4.5 - DLL Functions for Ethernet Configuration
	4.5 (a) - Get Ethernet Configuration
	4.5 (b) - Get IP Address
	4.5 (c) - Get MAC Address
	4.5 (d) - Get Network Gateway
	4.5 (e) - Get Subnet Mask
	4.5 (f) - Get TCP/IP Port
	4.5 (g) - Get DHCP Status
	4.5 (h) - Get Password Status
	4.5 (i) - Get Password
	4.5 (j) - Save IP Address
	4.5 (k) - Save Network Gateway
	4.5 (l) - Save Subnet Mask
	4.5 (m) - Save TCP/IP Port
	4.5 (n) - Use DHCP
	4.5 (o) - Use Password
	4.5 (p) - Set Password
	4.5 (q) - Set Telnet Prompt
	4.5 (r) - Get Telnet Prompt Status

	5 - Operating in a Linux Environment via USB
	5.1 - Summary of Commands
	5.2 - Detailed Description of Commands
	5.2 (a) - Get Device Model Name
	5.2 (b) - Get Device Serial Number
	5.2 (c) - Send SCPI Command
	5.2 (d) - Get Firmware
	5.2 (e) - Get Internal Temperature

	6 - Ethernet Control over IP Networks
	6.1 - Ethernet Communication
	6.1 (a) - Sending SCPI Commands/Queries Using HTTP
	6.1 (b) - Sending SCPI/Commands/Queries Using Telnet
	6.1 (c) - Device Discovery Using UDP

	7 - Program Examples & Tutorials
	7.1 - Perl Programming
	7.1 (a) - Ethernet HTTP Connection Using Perl's LWP Simple Interface
	7.1 (b) - USB Connection Using the ActiveX DLL in 32-bit Perl Distributions
	7.1 (c) - Work-Around for 64-bit Perl Distributions Using USB Connection

	7.2 - C# Programming
	7.2 (a) - Creating an Executable Using the .Net DLL in C# for USB Control

	7.3 - LabVIEW
	7.3 (a) - Creating a LabVIEW VI for USB Control with the ActiveX DLL

